

Application Note 1070-210

Quantum Design Application Note 1070-210, Rev. A5 1

www.qdusa.com June 12, 2018

Interfacing PPMS, DynaCool, Versalab and MPMS 3 Systems with

LabVIEW and Other .NET Languages

Introduction
Some users of Quantum Design instruments design custom

experiments using their own measurement electronics, especially

when working on the general purpose platforms of the PPMS,

DynaCool and VersaLab. This requires the user to have control of

both their external device as well as the system’s state (e.g.,

temperature and magnetic field). A very popular software package for

general measurement automation used by our customers is LabVIEW

from National Instruments. However, we at Quantum Design have

designed our own software package called MultiVu to control the

base system as well as measurement options. This application note

describes how we have made a bridge between these two software

environments for the purpose of controlling our system from

LabVIEW. Accompanying this note should be a ZIP archive entitled

QDInstrument_LabVIEW.zip which contains all necessary

programs described herein, assuming that the user has separately

purchased a LabVIEW software installation. This document is

intended for those with previous LabVIEW programming experience.

For general LabVIEW questions and support, please consult National

Instruments resources on the web.

Integrating LabVIEW and .NET

Languages with MultiVu

The software package accompanying this application note provides a

link between the LabVIEW and MultiVu programs. We have also

posted software packages on our Pharos digital library that

demonstrate this for C# and Visual Basic:

https://www.qdusa.com/pharos/view.php?fDocumentId=2704

as well as a socket server that allows remote control from non-

Windows operating systems:

https://www.qdusa.com/pharos/view.php?fDocumentId=2703

The program responsible for this connection is called QDInstrument

and must be installed on the computer running LabVIEW. In brief,

the QDInstrument program is a translator with a .NET interface for

communication with the LabVIEW VI and an OLE interface for

communication with MultiVu. For more detailed information about

this, please see Appendix B of this application note. There are a

number of advantages to using this package:

1) It can be used across the Quantum Design systems of

PPMS, DynaCool, Versalab and MPMS3. This is because

the QDInstrument program communicates with the user-

identified type of MultiVu and not with the system’s

hardware directly. The user is required simply to select

from a list in a VI (OpenQDInstrument) which system type

is in use.

2) It allows (requires) MultiVu to be running because it

interacts at the software level with the OLE interface of

MultiVu. Therefore it takes advantage of all the data

redirection and safeguarding built into MultiVu. Basically,

MultiVu treats the LabVIEW requests the same way it

treats direct user input from the keyboard at the MultiVu

computer.

3) In addition to being able to run LabVIEW locally on the

MultiVu computer, this software package can run in a

“remote mode” where the LabVIEW and MultiVu

computers communicate over the local area network

(LAN). In this case, a simple server program

QDInstrument_server.exe runs on the MultiVu

computer and handles requests from LabVIEW via

QDInstrument. The remote mode is appealing as it does not

require additional LabVIEW installations and also keeps

the MultiVu computer’s resources dedicated to running the

QD system.

4) It is compatible with all versions of LabVIEW from

LabVIEW 8.2 up to the most recent (at this time that is

LabVIEW 2014).

For more information about the software versions, compatibility, and

bug fixes please see the ReleaseNotes.txt file included in

the QDInstrument package accompanying this application note.

Appendix A gives some helpful historical background and context

regarding alternative methods for making custom experiments on

Quantum Design instruments.

http://www.qdusa.com/
https://www.qdusa.com/pharos/view.php?fDocumentId=2704
https://www.qdusa.com/pharos/view.php?fDocumentId=2703

Interfacing PPMS, DynaCool, Versalab and MPMS 3 Systems with LabVIEW and Other .NET Languages

2 Application Note 1070-210, Rev. A5 Quantum Design

 June 12, 2018 www.qdusa.com

Operating in Remote Mode

Figure 1: example using LabVIEW in remote mode on a PPMS system

Figure 2: example using LabVIEW in remote mode on a DynaCool
system

As mentioned above, running the LabVIEW program on a separate

computer from MultiVu has some advantages. The diagrams in

Figures 1 and 2 illustrate examples of a LabVIEW computer attached

to an LCR meter via, for example, a GPIB or USB interface (yellow

link). The QDInstrument VIs and QDInstrument.dll are

installed on this computer and communicate over .NET (green link).

The DLL is configured to address the

QDInstrument_server.exe program running on the

MultiVu computer. This is done via wired or wireless LAN (blue

link). It is also possible to connect an Ethernet cable directly between

the two computers in the absence of a LAN. The server program in

turn communicates over OLE with the MultiVu application (red link).

Lastly, MultiVu controls the instrument which in this case is either a

PPMS (Figure 1) or a DynaCool (Figure 2).

Follow these steps to set up for remote mode:

1) Install Microsoft .NET 3.5 on the computer running

MultiVu and the computer running LabVIEW computers.

Microsoft .NET 3.5 can be downloaded at

http://www.microsoft.com/en-

us/download/details.aspx?id=21.

2) Delete any previous versions of the QDInstrument VIs,

LLBs, and QDInstrument.dll on the LabVIEW

computer.

3) Copy all files except for the

QDinstrument_server.exe to a folder on the

LabVIEW computer. Keep these files in one directory. Any

directory is OK.

4) Copy QDInstrument_Server.exe to the MultiVu

computer. We recommend creating a folder

c:\QDLabVIEW but any directory is OK

5) Determine the IP address of the MultiVu computer. One

way to do this on Windows: Click Start→Run... and type

"cmd" then hit OK. At the command prompt, type

"ipconfig" and locate the address (in format

###.###.###.###) next to the text "IP Address" or

"IPv4 Address".

Operating in Local Mode

In local mode, both LabVIEW as well as a communication bus to the

user’s external electronics (here, GPIB to an LCR meter) must be

installed on the MultiVu PC. The .NET connection (green) between
the VIs and the QDInstrument.dll is the same as above, but this

time the DLL communicates directly with MultiVu over OLE (red).

Note that an independent GPIB bus is recommended in this setup so

that there are not traffic or settings conflicts in communicating with

the LCR meter vs. the PPMS electronics.

Figure 3: example using LabVIEW in local mode on a PPMS

Follow these steps to set up for local mode:

1) Install Microsoft .NET 3.5 on the computer running

MultiVu and LabVIEW. Microsoft .NET 3.5 can be

downloaded at: http://www.microsoft.com/en-

us/download/details.aspx?id=21.

2) Delete any previous versions of these VIs, LLBs, and

QDInstrument.dll.

3) Copy all files in the zip archive to a new folder on

your PC which runs MultiVu and LabVIEW. We

suggest creating a folder c:\QDLabVIEW but any

directory is OK.

Testing the Installation by Running
QDInstrument_Example.vi

To make sure your connection is functioning properly and to see an

example of how to use the QDInstrument VIs, load

QDInstrument_Example.vi and run it. The example

purges the sample chamber, increments temperature (295, 296, 297

K) and at each temperature steps the field from 0 to 500 Oe in 100 Oe

steps. At the end it sets zero field (on PPMS the end mode for the

magnet is Persistent) and a temperature of 300 K. Instructions for

running this example are below:

 LabVIEW

Model
6000

LCR meter

GPIB

LAN

LabVIEW PC MultiVu PC

GPIB CAN

Model
1000

QDInstrument_server.exe

MultiVu

PPMS

QDInstrument.dll

QDInstrument VIs

 LabVIEW

 LCR meter

USB

LAN

LabVIEW PC MultiVu PC

CAN

DynaCool

electronics

QDInstrument_server.exe

MultiVu

DynaCool

QDInstrument.dll

QDInstrument VIs

LabVIEW

Model
6000

LCR meter

GPIB

MultiVu PC

GPIB CAN

Model
1000

MultiVu

PPMS

QDInstrument VIs

QDInstrument.dll

http://www.qdusa.com/
http://www.microsoft.com/en-us/download/details.aspx?id=21
http://www.microsoft.com/en-us/download/details.aspx?id=21
http://www.microsoft.com/en-us/download/details.aspx?id=21
http://www.microsoft.com/en-us/download/details.aspx?id=21

Interfacing PPMS, DynaCool, Versalab and MPMS 3 Systems with LabVIEW and Other .NET Languages

Quantum Design Application Note 1070-210, Rev. A5 3

www.qdusa.com June 12, 2018

1) After opening the VI, go to the front panel and select the

appropriate instrument type: PPMS, VersaLab, DynaCool,

or SVSM (MPMS3). Ignore warnings from LabVIEW

about the version of the QDInstrument DLL if they come

up.

2) If in remote mode, toggle the Remote button to True and

enter the IP address of the MultiVu computer.

3) Launch MultiVu. If debugging the code, you may use

Simulation Mode for MultiVu on a PC not connected to the

QD instrument hardware.

4) If in remote mode, run

QDInstrument_Server.exe on the MultiVu

computer.

5) Run the VI and watch in MultiVu to see the chamber purge,

then the temperature and field steps.

6) For troubleshooting remote connections, a log of the

QDInstrument network connection is kept in the file

C:\QDLogs\QDInstrument\Event.log on

the LabVIEW computer.

Creating New LabVIEW Programs Using

QDInstrument VIs

1) Start with an OpenQDInstrument.vi. Wire a Ring

Control or Ring Constant to its "Instrument Type" input.

Choose the appropriate instrument: PPMS, VersaLab,

DynaCool, or SVSM (MPMS3). If you are using Local

Mode, set the "Remote" input to False (the "IP Address"

input is ignored in this case). If you are using Remote

Mode, set the "Remote" input to True and set the "IP

Address" input to the IP address of the MultiVu computer

found in the setup section.

2) Wire the "Instrument Ref" output of

OpenQDInstrument.vi to the other QDInstrument

VIs, such as SetTemperature.vi. This LabVIEW

RefNum is used by all QDInstrument VIs to refer to the

instrument. You may use this RefNum for LabVIEW flow

control.

3) You may wish to wire up the error clusters as well for

additional flow control. This is especially useful for use

with non-QD VIs because they do not use the

QDInstrument reference for flow control.

4) Integer inputs and outputs of the VIs, such as approach

modes and status codes, are enumerated. As a result, if you

right-click on the connection for one of these values and

select Create→Control, Create→Indicator, or

Create→Constant, LabVIEW will create enumerated rings

to help you set and read these values.

5) At the end of your VI, connect the "Instrument Ref"

RefNum to a .NET Close Reference VI in order to avoid a

memory leak in LabVIEW. The example

QDInstrument_Example.vi shows how to do

this.

The library QDInstrument.llb is a collection of LabVIEW

VIs which use QDInstrument and contains the following:

• OpenQDInstrument.vi: Gets a RefNum reference

for communication to MultiVu for use by the rest of the

QDInstrument VIs.

• SetTemperature.vi: Sets temperature, rate, and

approach mode.

• GetTemperature.vi: Reads present temperature

and temperature status.

• SetField.vi: Sets magnetic field, rate, approach

mode, and end mode.

• GetField.vi: Reads present magnetic field and field

status.

• SetChamber.vi: Sends sample chamber commands

such as purge and seal.

• GetChamber.vi: Reads sample chamber status.

• SetPosition.vi: Sets rotator position.

• GetPosition.vi: Reads present rotator position.

• WaitFor.vi: Waits for stability of requested

subsystems (Temperature, Field, Rotator Position, and

Chamber) and then waits for a specified amount of time.

NOTE: the Position subsystem is compatible with DynaCool Release

1.0.4 and later. Other platforms do not support the position

commands as of March 2013. Rotator position can be controlled on

PPMS using the SendPPMSCommand_Rotator VI, see the next

section.

NOTE: when using the PPMS with temperature control at a user

thermometer, a simple addition ($ALT_TEMP command) needs to be

made to the user thermometer .CFG file before sending it to the

Model 6000. Otherwise, GetTemperature.vi will read the

block temperature instead of the probe temperature. Relevant cases

include the rotator probe, multifunction probe (MFP), or any custom

probe that uses a .cfg file with a USERTEMP command for the user

thermometer. See the files in this folder on Pharos for details:

https://www.qdusa.com/pharos/browse.php?fFolderId=417

Note that this is only necessary on the PPMS system.

Getting PPMS Data Items and Low-Level

PPMS Control in LabVIEW using

QDInstrument VIs

For most applications, you can get the data you need from the PPMS

and access normal PPMS controls with the basic QDInstrument VIs.

However, you may need other data items (e.g. rotator position) or low

level control (e.g. analog and digital outputs) from the PPMS Model

6000. The following examples show how to do this:

To get PPMS data items:

1) On the LabVIEW computer, you should have the PPMS

folder which contains GetPPMSItem.vi and

GetPPMSItem_Example.vi.

2) If using remote mode, start

QDInstrument_Server.exe on the MultiVu

computer.

3) Open GetPPMSItem_Example.vi. If using remote

mode, set remote and set IP address to the address of the

MultiVu computer.

4) Set the Channel to 3.

5) Run the VI. You should see the rotator position reported in

"PPMS Data"

file:///C:/neil/AppData/Local/Microsoft/Windows/msantos/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/5XMHJ559/www.qdusa.com
https://www.qdusa.com/pharos/browse.php?fFolderId=417

Interfacing PPMS, DynaCool, Versalab and MPMS 3 Systems with LabVIEW and Other .NET Languages

4 Application Note 1070-210, Rev. A5 Quantum Design

 June 12, 2018 www.qdusa.com

6) Use GetPPMSItem_Example.vi as a template for

creating your own VIs. Consult Table A-1 of the PPMS

GPIB Commands Manual available on Pharos at:

https://www.qdusa.com/pharos/view.php?fDocumentId=328 for

mapping the channel. Note in that table that the channel

number is referred to as a bit.

7) You can use the same "Instrument Ref" for the

GetPPMSItem_Example.vi as for the other

QDInstrument VIs.

To access low-level Model 6000 controls by sending GPIB

commands and receiving replies from the Model 6000, use the

procedure described below. This functionality is a replacement for

sending GPIB commands to the Model 6000 using other techniques,

such as WinWrap scripts (using the SendPpmsCommand function) or

custom software. On the LabVIEW computer, you should have the

PPMS folder which contains SendPPMSCommand.vi,

SendPPMSCommand_Rotator.vi and

SendPPMSCommand_Example.vi. If using remote mode,

start QDInstrument_Server.exe on the MultiVu

computer. First we will cover the example of controlling the rotator

on the PPMS:

1) Open SendPPMSCommand_Rotator.vi. If using

remote mode, set remote and set IP address to the address

of the MultiVu computer.

2) The dialog to set the rotator position allows you move to a

position, go to the limit switch (called “go to index” in

motion dialog of MultiVu) or redefine current position to

the position value that is entered. The slow down code is

described in the PPMS GPIB Commands Manual

mentioned above.

3) The MOVE command for setting rotator position, like

temperature and field setting commands, does not contain a

wait condition so we added a wait dialog in this VI that

uses the GetPPMSItem command to query the PPMS status

word.

4) The “Final Position” box demonstrates the use of the

SendPPMSCommand to read the rotator position (instead

of the usual GetPPMSItem VI).

For an example of controlling the digital output of the Model 6000,

see this example:

1) Open SendPPMSCommand_Example.vi. If using

remote mode, set remote and set IP address to the address

of the MultiVu computer.

2) In MultiVu, select “Instrument->Digital Output…”. If

“Aux Driver 1” reads “ON”, then uncheck “Aux Driver 1”

and press “Set” below “Digital Outputs”.

3) Run SendPPMSCommand_Example.vi.

4) In MultiVu, you should see “Aux Driver 1:” reading “ON”.

In LabVIEW,” PpmsReply” should be blank indicating a

successful “DIGSET 1” GPIB command. “PpmsReply 2”

should read “1”, the value returned from the GPIB query

“DIGSET?”.

5) Use SendPPMSCommand_Example.vi as a

template for creating your own VIs. Consult the PPMS

GPIB Command Manual for details on GPIB commands

you use with the Model 6000.

6) You can use the same "Instrument Ref" for the

QDInstrument_Example.vi as for the other

QDInstrument VIs.

Getting CAN Data Items in LabVIEW

using QDInstrument VIs

For most applications, you can get the necessary data from the

standard VIs provided. However, in case a CAN data item is needed,

this example shows how it is done:

1) On the LabVIEW computer, you should have the CAN

folder which contains CAN_QDInstrument.llb and

CAN_Float_Example.vi.

2) If using remote mode, start

QDInstrument_Server.exe on the MultiVu

computer.

3) Open CAN_Float_Example.vi. Set the instrument

type: PPMS, VersaLab, DynaCool or SVSM (MPMS3). If

using remote mode, set remote and set IP address to the

address of the MultiVu computer.

4) Set the CAN Module Node ID to an existing node on your

system. For DynaCool and SVSM, you can use node 3 for

the TCM. For VersaLab, use node 2 for the VersaLab

controller.

5) Run the VI. The SDO preloaded in this example is that of

the temperature readback of the temperature controller.

You should read a nonzero value in the field "SDO Float

Result".

6) Use CAN_Float_Example.vi as an example for

creating your own VIs. You probably need to ask Quantum

Design for information about which CAN SDOs to read

(node, index and subindex).

7) You can use the same "Instrument Ref" for the CAN VIs as

for the QDInstrument VIs.

Troubleshooting

Below are the most common solutions offered when customers report

problems in communicating between computers or programs:

1) Make sure .NET 3.5 is installed on both computers. In our

experience it is not always sufficient to have a newer .NET

installation (e.g., 4.0).

2) Windows Firewall may be blocking the TCP call from the

remote computer. Please see this screencast video on

Pharos which shows how to open a TCP port for

communication when Windows Firewall is activated:
https://www.qdusa.com/pharos/view.php?fDocumentId=1394

3) (PPMS only) make sure you have the latest release of

PPMS MultiVu available from www.qdusa.com

4) After installing MultiVu software, it needs to be listed as an

OLE server in the Windows registry. This is done by right-

clicking on the MultiVu icon and selecting “run as

administrator”. After MultiVu launches, you can exit again.

This only has to be done once.

5) On computers with UAC (user account controls) enabled,

you must run MultiVu and

QDInstrument_server.exe using the same

administrator privilege level: either both as administrator or

both as non-administrator. When in local mode, LabVIEW

must have same privilege level as MultiVu.

6) (this case is probably quite rare) When in remote mode: in

the event that the TCP port needs to be changed from its

default value of 11000 due to port conflicts, it is accessible

http://www.qdusa.com/
https://www.qdusa.com/pharos/view.php?fDocumentId=328
https://www.qdusa.com/pharos/view.php?fDocumentId=1394
http://www.qdusa.com/

Interfacing PPMS, DynaCool, Versalab and MPMS 3 Systems with LabVIEW and Other .NET Languages

Quantum Design Application Note 1070-210, Rev. A5 5

www.qdusa.com June 12, 2018

under Options in QDInstrument_server.exe

and in the Block Diagram for

OpenQDInstrument.vi in LabVIEW. The value

obviously needs to match both these places and also be a

port that is not in use on either computer.

7) Security settings on certain Windows-based PCs may flag

the downloaded QDInstrument.dll as potentially

unsafe and block execution. This will lead to VIs in the

QDInstrument package failing to run properly, usually

accompanied by a LabVIEW error stating ‘Error 1386 –

The specified .NET class is not available in LabVIEW’.

This issue can be resolved by navigating to the location

where QDInstrument.dll is saved, right-clicking to

access the properties menu, and clicking the ‘Unblock’

button at the bottom of the dialog:

Appendix A: Historical Overview of

Custom Experiments on PPMS

If one wanted to perform any measurement outside the scope of

MultiVu, there were historically 3 options:

1) Advisories (PPMS only): these are commands in MultiVu

sequences which trigger an external program (C++, Delphi,

Visual Basic) to perform a task. Shortcomings of this

method are that it requires the user to write such a program

and run it on the same MultiVu computer, it provides only

primitive and one-way communication from MultiVu, and

is only available on the PPMS. This method is described in

PPMS Application Note 1070-202 at www.qdusa.com

while 3rd party instrument sample programs are available

at:

http://www.qdusa.com/techsupport/softwareUpgrades.html.

2) Scripting within MultiVu using WinWrap Basic editor

(available on all systems): think of scripts here as enhanced

MultiVu sequences that have the full power of the Visual

Basic programming language with its full command set.

These are a very convenient way of enhancing an existing

measurement sequence without going outside of MultiVu.

A shortcoming for use on PPMS: there is currently (March

2013) only one GPIB bus that can be addressed within

WinWrap so any external instrument must use another bus

(USB, Ethernet, serial) or share the GPIB bus with the

PPMS (not ideal due to possible GPIB settings conflicts

and heavy traffic to Model 6000). This will be corrected in

future versions of PPMS MultiVu. See Application Note

1070-209 at www.qdusa.com along with the attached

example programs for more information on scripting.

3) LabVIEW (PPMS only): in the absence of a package

provided by Quantum Design, users have written

LabVIEW VIs (virtual instruments) which controlled the

PPMS by issuing GPIB commands directly to the Model

6000. Drawbacks to this method are that:

a. MultiVu is usually required to be closed due to

conflicts between MultiVu and LabVIEW at the

Model 6000. This presents a serious problem in

cases where MultiVu is required to be running in

order to handle data “redirection” such as

temperature (e.g., with Helium-3 or Dilution

Refrigerator options) or magnetic field (when

using our new CAN-based magnet power

supplies).

b. The VIs will only work on the PPMS and not the

CAN-based DynaCool, Versalab or MPMS3

systems.

It is clear that many customers prefer LabVIEW for running their

custom experiments so a solution to LabVIEW-MultiVu integration

was needed across all systems.

Appendix B: More detail about MultiVu,

OLE and .NET

Modern Quantum Design instruments all use MultiVu software for

control and monitoring of the instrument. Different instrument

platforms (PPMS, DynaCool, VersaLab, and MPMS3) use different

varieties of MultiVu, but much in MultiVu is the same on all systems,

such as many user-interface elements. Most importantly for

communicating with QD instruments from third party software, all

four varieties of MultiVu make available the same interface for

common operations including setting and reading temperature,

magnetic field, and chamber gas state. The interface in MultiVu is

Microsoft Object Linking and Embedding (OLE, also known as

ActiveX). MultiVu is an OLE server, so any program that can act as

an OLE client can connect to the MultiVu OLE server to access

temperature, field, and chamber gas functionality.

LabVIEW can act as an OLE client, so in principle it can connect

directly to MultiVu. Due to variations in the way OLE is

implemented, making a connection in this way between LabVIEW

and MultiVu is not reliable. Another issue with this approach is that

each variety of MultiVu looks like a different program to LabVIEW,

so different LabVIEW VI files would be needed for each QD system.

It is preferable to have one set of VI files that work with all QD

systems.

LabVIEW works very well with a newer Microsoft technology,

.NET. QDInstrument.dll provides a bridge between MultiVu

(using OLE) and LabVIEW (using .NET). QDInstrument.dll

communicates with MultiVu using OLE, and provides access to the

temperature, field, and chamber gas functionality on its .NET

interface for use by LabVIEW.

Additionally, QDInstrument.dll makes it possible to use the

same LabVIEW VI files on all four modern QD platforms. It

provides a generic type for all platforms called QDInstrument. When

a VI creates an instance of this type in LabVIEW, the VI specifies

what platform to connect to, and then QDInstrument.dll

connects to the appropriate variety of MultiVu.

 QDInstrument.dll provides another important function: the

ability to make a remote connection, with LabVIEW and MultiVu on

separate computers. An additional program,

QDInstrument_Server.exe, provides remote access to the

temperature, field, and chamber gas functionality of MultiVu. When

instructed to use a remote connection, QDInstrument.dll

communicates with QDInstrument_Server.exe (over the

local area network) instead of MultiVu (using OLE). The LabVIEW

VI files are the same for local and remote modes: the VI simply

file:///C:/neil/AppData/Local/Microsoft/Windows/msantos/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/5XMHJ559/www.qdusa.com
http://www.qdusa.com/
http://www.qdusa.com/techsupport/softwareUpgrades.html
http://www.qdusa.com/

Interfacing PPMS, DynaCool, Versalab and MPMS 3 Systems with LabVIEW and Other .NET Languages

6 Application Note 1070-210, Rev. A5 Quantum Design

 June 12, 2018 www.qdusa.com

specifies remote mode (and the IP address of the MultiVu computer)

when creating an instance of QDInstrument.

http://www.qdusa.com/

