nanoCVD-WG(P)

Compact system for wafer-scale CVD synthesis of graphene, with optional plasma module

Key features:

- Compact, low-footprint design
- Wafer-scale synthesis: 3" or 4"
- 1100 °C maximum platen temperature
- Cold-walled technology
- MFC-controlled process gases
- Optional plasma module (RF, 13.56 MHz)
- Fully-automatic control of critical conditions

- User-friendly, touchscreen HMI interface
- Define/save multiple growth recipes
- PC connection for data-logging
- Equipped for easy servicing
- Comprehensive safety features
- Cleanroom compatible
- Implements proven nanoCVD technology

Moorfield Nanotechnology Limited. Unit 1, Wolfe Close, Parkgate Industrial Estate, Knutsford, Cheshire, UK, WA16 8XJ. Registered in England and Wales with company number 3044718.

PRODUCT INFORMATION

Overview:

722609

Developed in collaboration with academic partners, nanoCVD technology is proven for the rapid-throughput production of high-quality graphene for R&D applications via the wellestablished chemical vapour deposition (CVD) route that is considered most promising for future commercialisation of graphene-based technologies.

Models WG (thermal only) and WGP (plasma-enhanced) are the result of the scaling of this technology to the wafer scale (3" or 4"), in a coldwalled, actively cooled chamber. While this represents a significant leap in the capabilities of the nanoCVD range, intelligent design means the compact nature of the units has been maintained for efficient location and integration.

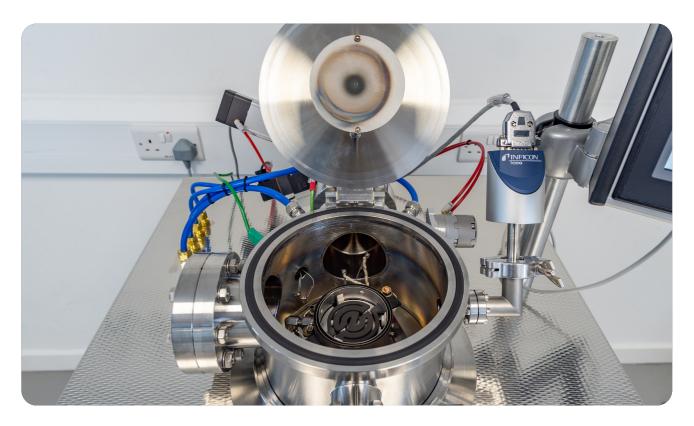
System design:

Cold-walled technology: In contrast to hot-walled systems that typically involve tube-type furnaces, in nanoCVD systems only the stage is heated. This enables better substrate temperature control, faster heating/cooling rates and efficient usage of high-purity process gases and electrical power.

Chamber, stage and pumping system: The tool contains a high-vacuum chamber. Inside, and at the base of the chamber, is a resistively heated substrate stage onto which foil or wafer substrates can be placed. While the system can accept wafer-scale substrates, it is equally possible to use smaller, 'chip'-scale samples. The substrate stage is designed for uniform heating up to 1100 °C, with temperature control resolution to \pm 1°C. For chamber access, the lid is easily closed and sealed. Chamber evacuation is via a turbomolecular pumping system for low base pressures of <5×10-7 mbar. This allows for low-contamination material synthesis.

Manual and automatic operation: After chamber evacuation, CVD processes can be operated in either manual or automatic modes. In automatic mode, the unit allows for flexible design of multiple-step processes, with control over all critical parameters including temperature, pressure and RF plasma power (if fitted). During process execution, all hardware is precisely controlled, automatically, by the on-board electronics.

Process gas introduction: The standard configuration is equipped for Ar, H_2 and CH_4 process gases, with flows controlled by massflow controllers (MFCs). With respect to process gas introduction, the system can be operated in two ways: flow-rate and pressure control. For flow-rate control, users define required MFC flow rates that the system then implements. For pressure control, the unit automatically sets pumping system state and gas flow rates in a dynamic fashion to achieve defined pressure setpoints. For this latter mode, pressure monitoring is via a high-resolution capacitance manometer

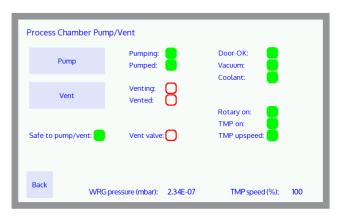


High vacuum chamber, HMI, and pumping system to the rear.

Chamber with lid opened to reveal inner components and heat shielding. The capacitance manometer and wide-range gauge for pressure measurement are visible to the right of the chamber

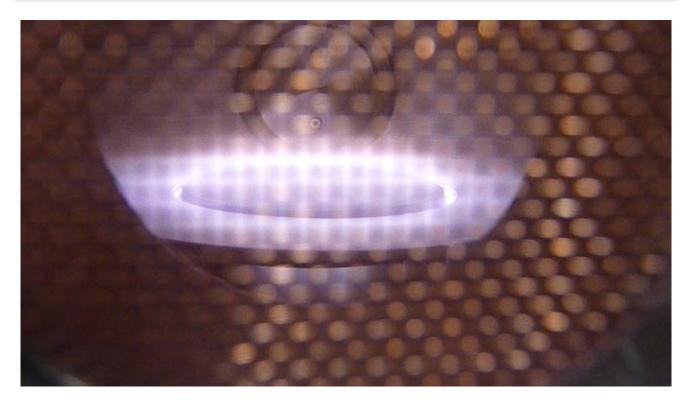
Plasma module (model WGP): For customers requiring plasmaenhanced processes, the system can be fitted with the plasma module. This includes a 150 W RF power supply (13.56 Mhz) and upgrades to the stage to allow for plasma generation. Users can determine required plasma power levels with 1 W resolution. Uniquely, model WGP can also be configured to allow for direction of RF bias to multiple in-chamber electrode surfaces: the substrate platen and a second, 'top' electrode located above the substrate surface. The vertical position of the top electrode can even be adjusted via a Z-shift, allowing for plasma generation at well-defined

Lid of the opened chamber, self-supported in the retracted position. Visible here is the top electrode. The vertical position of this can be adjusted, allowing for plasma generation in a controlled remote location with respect to the substrate.


Control system:

The unit is fitted with industrial-grade, high-stability PLC electronics. User operation is via a 7" touchscreen HMI mounted on the front panel. Users are able to define, store and run multiple 'recipes' via flexible, but easy-to-use, touchscreen software. Online data-logging and recipe upload/download to a PC is possible via the provided NanoConnect software.

Process Execution: Pr	ocess 5			
Stage: 3		Argon flow (SCCM):	5.0	
Stage time, total (s):	60	Hydrogen flow (SCCM):	1.0	
Stage time, real (s)	60	Methane flow (SCCM):	1.0	
HC valve:		Hi-res pressure (mbar):	10.0	~
LC valve:		Wide range pressure (mbar):	34.44	SPs
TMP (%): 100				
Heater temp. (°C): 100		Pressure control:		
Temp. ramp:		GDM:		Plots
Back		Next Hold Layer Layer	Process Start	Process Stop


remote distances from the substrate surface (e.g., for balancing etching and synthesis effects).

Safety features: The unit is equipped with an emergency-off switch and multiple interlocks based on coolant flow and chamber vacuum levels. In addition, on-board electronics perform continuous hardware checks; in the event of any issue, the system is locked down to a safe state until normal conditions are resumed.

References (nanoCVD Thermal-CVD Graphene Growth):

- Bointon, T. H., et al. "High Quality Monolayer Graphene Synthesized by Resistive Heating Cold Wall Chemical Vapor Deposition" Adv. Mater. 2015 DOI: 10.1002/adma.201501600
- 2. Neves, A. I. S., et al. "Transparent Conductive Graphene Textile Fibers" Sci. Rep. 2015 DOI: 10.1038/srep09866
- 3. Lupina, G., et al. "Residual Metallic Contamination of Transferred Chemical Vapor Deposited Graphene" ACS Nano 2015 DOI: 10.1021/ acsnano.5b01261

Plasma generation through application of bias to the heated substrate stage.

System requirements: (standard configuration)

- Substrates: Typically foils or films (including on wafers) of various metals
- Process gases: 25 psi supplies of methane, hydrogen and argon
- Service gas: Dry inert (e.g., nitrogen or argon), 60–80 psi supply
- Coolant: 18–20 °C coolant/water flow, 3 kW cooling power
- Power: Single-phase 230 V, 50 Hz, 16 A
- Exhaust extraction

Moorfield Nanotechnology Limited.

Unit 1 Wolfe Close, Parkgate Industrial Estate, Knutsford, Cheshire United Kingdom. WA16 8XJ. Company reg 3044718. VAT reg GB 616 3241 66

Phone+44 (0)1565 722609Webmoorfield.co.ukEmailsales@moorfield.co.uk

Applications:

- Fundamental research
- Education
- Product R&D and pilot-scale
 production

All images/descriptions in this brochure are indicative only; final appearance and design subject to your exact configuration.

Distributed by