

Application Note 1201-017

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 1

www.qdusa.com 03/09/2018

Introduction

The Quantum Design compressor Software Development Kit (SDK), is a set of tools that enable the creation of
custom software applications that automate the control of the helium compressors in third party instruments.

The compressor SDK was developed using C# in the .NET framework, utilizing a polymorphic design. It

provides an easy interface for controlling the compressor functions, without the need of in-depth knowledge of
low level controls. This SDK is provided to customers as an easy to use Dynamic Link Library (DLL). Also, a

Graphical User Interface (GUI) application included in the kit, provides examples of using the SDK including

how to interface of any of the Quantum Design compressor products to a PC.

SDK Components

The SDK consists of two public classes within the QdCompressorSDK namespace. The first class, called
ControlComp provides the essentials for controlling the compressor. The second class AdvControlComp
implements all of the features found in ControlComp and provides additional advanced features.

In order to not have to qualify the full class name, one can use the “using” directive to include the namespaces,
as shown below:

using QdCompressorSdk;

Basic Interface

The “basic interface” is implemented by the ControlComp class which contains only the necessary commands
for controlling the compressor in each of its run modes. There are a few custom data types used in
ControlComp as input and return arguments. The AdvControlComp class includes basic operation and some
diagnostic information.

http://www.qdusa.com/

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 2

www.qdusa.com 03/09/2018

Common Features: run modes

The CompressorMode is an enumeration of compressor operational modes. Table 1.1 shows the various modes
and their applicability to a particular compressor type:

LowSpeed, NormalSpeed, and HighSpeed correspond to three power levels available in the compressors. The
speeds at which the compressor capsule and cold head drive motor typically run in these situations are
described in Table 1.2:

Table 1.1 Compressor Modes

Mode HAC900S HAC900 HAC4500 HLC4500

HighSpeed YES YES YES YES

NormSpeed YES YES YES YES

LowSpeed YES YES YES YES

CustomSpeed YES YES YES YES

PidMode YES NO NO NO

PdoSpeed NO NO NO YES

Table 1.2 Simplest Compressor Modes

Power Level Scroll Compressor Speed Cold Head Speed

HAC900/HAC900S

High 30 70

Normal 18 50

Low 13 30

HAC4500/HLC4500

High 60 70

Normal 40 60

Low 30 50

With CustomSpeed, the user specifies a head speed and compressor speed, in terms of frequency, and in units
of Hz. The head speed describes the movement of the displacer in the cold head. The compressor speed refers
to the frequency of the inverter. Using faster speeds yields faster cooling.

With PidMode (only available to the HAC900S), the firmware controls both the head and compressor capsule
speeds using a PID control algorithm. The process variables used are the first-stage and second-stage

temperatures. This mode depends upon set-points, easily set by an object command, as well as PDOs
(CANOpen Process Data Objects) reporting the current first-stage and second stage temperatures. For example
if the HAC900S is used with a Qauntum Design PPMS Versalab, than the Versalab cryostat controller sends the

http://www.qdusa.com/

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 3
www.qdusa.com 03/09/2018

required PDOs. If a Versalab is not present, an alternative means must be provided to report the required
temperatures. Commands, discussed later, exist for specifying the required PDOs reporting the first-stage and
and second stagetemperatures, as well as specifying the first-stage and second stage set-point temperatures. By
default, the set-point temperatures are 40 K and 4 K respectively.

Note that PdoSpeed is only applicable to the HLC4500. It is similar to PidMode in that it adaptively adjusts

speeds based upon PDO input.

Basic Interface: data types

The CompressorMode enum describes the different compressor operating modes.

 // Summary: An enumeration of the compressor run modes

 enum CompressorMode

 {

 LowSpeed = 1, // lowest speed setting

 MedSpeed = 2, // midway between low and highest speed

 HighSpeed = 3, // highest speed setting

PdoSpeed = 4, // adaptive temperature control using PDOs

 CustomSpeed = 5, // for specifying custom speeds

 PidMode = 7 // PID temperature-control mode

 }

Common Features: run status

Another public data type is an enumeration of the run status, shown below. It simply describes if the
compressor is “Not Running”, “Running”, or “Only the Cold-head is running”.

 // Summary: An enumeration of the compressor run status

 enum RunStatus

{

 NotRunning = 0, // Compressor is not running

 Running = 1, // Compressor and cold-head are both running

 OnlyHeadRunning = 2 // Only the cold-head is running

 }

In order to obtain the enumerated “Run Status”, the following command is used.

// Summary: Get the current run status as a RunStatus type

 // Returns: The run status as an enum

 RunStatus GetRunStatus();

file:///C:/Users/msantos/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/5XMHJ559/www.qdusa.com

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 4

www.qdusa.com 03/09/2018

Common Features: error codes

There is also a series of error codes that are constant and publicly available strings. Each code provides a
description of the error, and is shown below.

 // Summary: Indicates no error for last command

 const string ERROR_NONE = "No Error";

 // Summary: Indicates an error for last command

 const string ERROR_REMOTE = "Remote mode must be enabled for this operation.";

 // Summary: Indicates an error for last command

 const string ERROR_CUSTOM_MODE = "The CustomSpeed mode must be selected.";

// Summary: Indicates an error for last command

 const string ERROR_COBID = "The cobID is out of range [0x181 to 0x57F]";

 // Summary: Indicates the requested speed is out of range

 const string ERROR_SPEED = "The speed is out of range";

 // Summary: Indicates the requested speed ratio is invalid

 const string ERROR_SPEED_RATIO = "The head/comp speed ratio is invalid.";

 // Summary: Indicates an error occurred during CAN i/o.

 An error code is appended to the error string.

 const string ERROR_CAN = "CAN Error ";

For obtaining the current error code, the below function is used, which returns one of the error codes described
above.

// Summary: Obtain the current command error code

string GetErrorCode();

Common Features: constructors

There are two constructors for the ControlComp class, one of which contains the argument “nodeId”, for
specifying the CAN node ID of the HAC900S. By default, the CAN node ID is 4, and if this has not changed,

the argument-free constructor can be used.

// Summary: Argument-free ControlComp constructor

 ControlComp();

// Summary: ControlComp constructor with CAN node ID as an argument

ControlComp(byte nodeId = DefaultNodeId);

http://www.qdusa.com/

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 5
www.qdusa.com 03/09/2018

Common Features: basic operation

In order to control the compressor from anywhere other than the front panel, “Remote Mode” must be set. This
is accomplished with the function below. If a command is attempted for which “Remote Mode” is required,
and it is not enabled, the ERROR_REMOTE code will be set.

// Summary: Enable/Disable remote control mode

 // Param "doEnable": true = enable, false = disable

// Returns: true = success, false = failure

 bool SetRemoteModeEnable(bool doEnable);

 // Summary: Check if "remote control mode" is enabled

 // Returns: true = enabled, false = disabled

 bool IsRemoteModeEnabled();

The CompressorMode described by the enumerated type discussed above is set with the following function.

// Summary: Set the compressor run mode type, if "remote mode enabled" is true

 // Param "compMode": Mode selected from CompressorMode enum

// Returns: true = success, false = failure

 bool SetRemoteModeType(CompressorMode compMode);

 // Summary: Get the current compressor run mode as CompressorMode type

 // Returns: The current compressor operational mode as an enum

 CompressorMode GetRemoteModeType();

 // Summary: Get the current compressor run mode as a string

 // Returns: The current compressor operational mode as a string

 string GetRemoteModeString();

In order for the compressor to actually run, “Run Enable” must be set, and is accomplished by the following
command. Note that “Remote Mode” must be enabled in order for this function to work.

// Summary: Enable/Disable the compressor to run if "remote control mode" is enabled

// Param "doEnable": true = enable, false = disable

// Returns: true = success, false = failure

 bool SetRunEnable(bool doEnable);

// Summary: Check if "run" is enabled

 // Returns: true = enabled, false = not enabled

 bool IsRunEnabled();

file:///C:/Users/msantos/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/5XMHJ559/www.qdusa.com

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 6

www.qdusa.com 03/09/2018

The run time is the time in seconds that the compressor has been continuously running. If the compressor is
rebooted, this timer resets to zero.

 // Summary: Get the current run duration in seconds

 // Returns: The time the compressor has been continuously running in seconds

 int GetRunTime();

Common Features: commands for “custom speed” mode

In “Custom Speed” mode, the compressor and cold-head speeds need to be set to the desired custom values.

The commands shown below are provided for this. The “Set” functions will return false if the provided
arguments are incorrect, or the compressor is not in “Custom Speed” mode. Once both the custom head and
custom compressor speeds have been selected, ActivateCustomSpeeds() must be called for the new speeds to
take effect.

 // Summary: Set the custom cold-head speed (Hz) if "custom speed mode" is selected

// Param "freqHz": Frequency in Hz

 // Returns: true = success, false = failure

 bool SetCustomHeadSpeed(float freqHz);

 // Summary: Get the current cold-head speed (Hz) setting

 // Returns: The cold-head set-point speed/frequency in Hz

 float GetCustomHeadSpeed();

 // Summary: Set the custom compressor speed (Hz) if "custom speed mode" is selected

 // Param "freqHz": Frequency in Hz

 // Returns: true = success, false = failure

 bool SetCustomCompSpeed(float freqHz);

 // Summary: Get the current compressor speed (Hz) setting

 // Returns: The current set-point compressor/inverter speed/frequency in Hz

 float GetCustomCompSpeed();

// Summary: Activates the custom speeds set via SetCustomCompSpeed() and SetCustomHeadSpeed()

 void ActivateCustomSpeeds();

For the HAC900S only, the ratio of the head speed to the compressor speed must be at least 2. The function
below verifies if this requirement is met. If used with the HLC4500 or HAC4500, IsSpeedRatioValid() always
returns true, since these compressors are not limited by speed ratio.

 // Summary: Indicates if the speed ratio, headSpeed/compSpeed, is valid

 // Param "headSpeed": Cold-head speed in Hz

 // Param "compSpeed": Compressor speed in Hz

 // Returns: true = valid, false = invalid

 bool IsSpeedRatioValid(float headSpeed, float compSpeed);

http://www.qdusa.com/

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 7
www.qdusa.com 03/09/2018

Common Features: speed and pressure

The following commands are provided for reporting the actual compressor and cold-head speeds.

 // Summary: Get the actual compressor speed (Hz)

 // Returns: The actual compressor speed/frequency in Hz

float GetActualCompSpeedHz();

 // Summary: Get the actual cold-head speed (Hz)

 // Returns: The actual cold-head speed/frequency in Hz

 float GetActualHeadSpeedHz();

Finally, functions are provided for obtaining the compressor supply and return pressures in units of mega-
Pascal.

 // Summary: Get the current supply pressure (MPa)

 // Returns: The supply pressure in MPa

 float GetSupplyPressureMPa();

/// <summary>Get the current return pressure (MPa)</summary>

 /// <returns>The return pressure in MPa</returns>

 float GetReturnPressureMPa();

Common Features: commands for PID mode (HAC900S)

In PID mode (HAC900S only), the compressor uses both the first-stage temperature and second-stage
temperature as control variables. Two PDOs (process data objects – a CANOpen mechanism) are sent from an
external module over the CAN bus in order to report the actual first-stage and second-stage temperature.

If the compressor is used with a Versalab, these PDOs, which associate the first-stage temperature to the
internal gas switch temperature and the second-stage to the superconducting magnet temperature, are sent
automatically by the Versalab. However, if PID control is desired for a compressor without a Versalab, then one
must provide a module that obtains the first-stage and second-stage temperatures. If this data is available, the

TransmitTempPDOs function can be used to send the data to the compressor, allowing it to run in PID mode.
The section called “Providing Actual Temperatures to the SDK” discusses how to provide the required

temperature measurements to the SDK.

// Summary: Transmit PDOs reporting actual first-stage and second-stage temperatures to the
compressor

 // Param "firstStageTempK": Actual first-stage temperature (K)>

 // Param "secStageTempK": Actual second-stage temperature (K)

 void TransmitTempPdos(float firstStageTempK, float secStageTempK);

For setting and viewing the set-point temperatures for PID mode, the following functions are provided. The
default set-points, set in the compressor firmware, are 4 K for the second-stage and 40 K for the first stage.

file:///C:/Users/msantos/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/5XMHJ559/www.qdusa.com

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 8

www.qdusa.com 03/09/2018

// Summary: Set the desired temperature set-points (K)

// Param "ssTempKSetpoint": Temperature set-point for second-stage

 // Param "fsTempKSetpoint": Temperature set-point for first-stage

 void ConfigTempSetpoints(float ssTempKSetpoint, float fsTempKSetpoint);

 // Summary: Get the current temperature set-points (K)

 // Param "ssTempKSetpoint": Set-point temperature for second-stage

 // Param “fsTempKSetpoint": Set-point temperature for first-stage

 void GetTempSetpoints(ref float ssTempKSetpoint, ref float fsTempKSetpoint);

The actual first and second stage temperatures are obtained with the following function. The actual
temperatures are only relevant in PID mode, when PDOs that report the actual temperatures are available. If
there are no PDOs available, this function will return 0 K for both the first-stage and second-stage.

 // Summary: Get the actual first-stage and second-stage temperature (K)

 // Param "ssTempK": Actual temperature for second-stage

 // Param "fsTempK": Actual temperature for first-stage

 void GetActualTemps(ref float ssTempK, ref float fsTempK);

Advanced Interface

The Advanced Interface inherits all of the features of the basic Interface, and provides some additional
diagnostic tools. These tools are unlikely to be desired by a typical customer.

Common Features: additional diagnostics

The firmware version can be obtained via GetCompressorVersion(). The HAC900S is unique in that it has two
sets of firmware. Therefore, the SDK provides GetHeadVersion() as well, which provides the version of the
cold-head firmware.

// Summary: Obtain the compressor firmware version

 string GetCompressorVersion();

 // Summary: (HAC900S only) Obtain the cold-head firmware version

 string GetHeadVersion();

An enumeration is provided which describes the system status, and is shown below.

 // Summary: Enumeration of system status for the compressor

 enum SystemStatus

 {

 Unknown = 0, // status unknown

 NotRunning = 1, // compressor is not running

 AdaptivePower = 5, // adaptive power mode selected

http://www.qdusa.com/

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 9
www.qdusa.com 03/09/2018

 CustomizedSpeed = 6, // custom speed selected

 Startup = 7, // in startup

 OverTemperatureFault = 10, // temperature fault occurred

 GasPressureFault = 11, // gas pressure fault occurred

 OilSystemFault = 12, // oil system fault occurred

 InverterFault = 13, // inverter fault occurred

 AdsorberLifeExceeded = 14, // charcoal adsorber needs to be replaced

 GeneralFailure = 15 // miscellaneous failure

 }

Advanced Interface: constructors

There are two constructors for the AdvControlComp class, one of which contains the argument “nodeId”, for
specifying the CAN node ID of the HAC900S. By default, the CAN node ID is 4, and if this has not changed,
the argument-free constructor can be used.

 // Summary: Argument-free AdvControlComp constructor

 AdvControlComp();

// Summary: AdvControlComp constructor, with option to specify CAN Node ID

 AdvControlComp(byte nodeId = DefaultNodeId);

The system status, as described the SystemStatus enum, is obtained with the following function.

 // Summary: Obtain the system status as a SystemStatus enum type

 // Returns: The System Status as an enum

 SystemStatus GetSystemStatus();

There are several other diagnostic functions described next, pertaining to the several key temperatures, head

displacer-motor current, inverter current, inverter power consumption, the oil level, and the oil-flow ratio.

// Summary: Obtain the capsule temperature

// Returns: The temperature in Celsius

 float GetCapsuleTempC();

 // Summary: Obtain the helium temperature

 // Returns: The temperature in Celsius

float GetHeliumTempC();

 // Summary: Obtain the oil temperature

 // Returns: The temperature in Celsius

 float GetOilTempC();

file:///C:/Users/msantos/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/5XMHJ559/www.qdusa.com

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 10

www.qdusa.com 03/09/2018

 // Summary: Obtain the current used by the head inverter

 // Returns: The current in Amps

 float GetHeadCurrentA();

 // Summary: Obtain the current used by the compressor inverter

 // Returns: The current in Amps

 float GetCompCurrentA();

 // Summary: Obtain the inverter power consumption (kW)

 // Returns: The power consumed by the inverter in kW

 float GetInverterPowerkW();

 // Summary: Obtain the current cold-head oil level (%)

 // Returns: The oil level percentage

 float GetOilLevelPct();

 // Summary: Obtain the current cold-head oil flow ratio

 // Returns: The oil-flow ratio

 float GetOilFlowRatio();

Advanced Interface: timed operation

The SDK provides a set of commands to configure the compressor to run for a specified duration in units of
hours.

 // Summary: Configure the compressor to run for the specified duration in hours

// Param "hours": duration for which to run the compressor

// Returns: true = command was successful, false = command failed due to timer already running,
or "hours" being invalid

 bool RunCompForSpecifiedDuration(float hours);

// Summary: Stop the compressor timer. The compressor will continue running if stopped

 void StopTimer();

 // Summary: Returns the number of hours remaining for the compressor timer

 // Returns: The time remaining in hours

 float GetTimerRemainingTime();

 // Summary: Indicates if the timer is currently running

 // Returns: true = running, false = not running

 bool IsTimerRunning();

http://www.qdusa.com/

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 11
www.qdusa.com 03/09/2018

Common Features: log file

The SDK also provides commands for logging diagnostic data. The following functions are used for logging
data to a CSV file called <compressorType>.csv. The file is logged to the directory in which the .exe using this
SDK is located. The default log interval is 3000 milliseconds, but this can be changed using SetLogInterval.
The information that is logged depends on the compressor type. The HAC900S has the most diagnostics and
therefore logs more data then HAC4500 or HLC4500.

// Summary: Creates a log of important diagnostic values; updates once per second. Log name is
"qdCompLog.csv"

 void StartLogging();

 // Summary: This stops and closes the diagnostic log. Log name is "qdCompLog.csv”

 void StopLogging();

 // Summary: Returns the path of the log file

 // Returns: Path of the log file location

 string GetLogFilePath();

 // Summary: Sets the time interval between logged data points

 // Param “intervalMs": the time interval (milliseconds)

 // Returns: true = command was successful, false = command failed due to invalid "intervalMs"

 bool SetLogInterval(ushort intervalMs);

HAC900S-Specific Diagnostics

The HAC900S contains more diagnostic features than the HAC4500 or HLC4500. A summary of these
diagnostics is provided here. Shown below are functions for obtaining the PCB temperature, spool-valve
current, and phase delay in degrees between the displacer and spool-valve motion.

 // Summary: Obtain the cold-head PCB temperature (C)

// Returns: The temperature of the 5-phase board (cold-head controller) in degrees C

 float GetBoardTempC();

 // Summary: Obtain the cold-head valve current (A)

 // Returns: The current used by the spool valve

 float GetValveCurrentA();

 // Summary: Obtain the current cold-head valve phase delay setting (degrees

 // Returns: The phase delay between the valve and displacer in degrees

 float GetPhaseDelayDegrees();

file:///C:/Users/msantos/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/5XMHJ559/www.qdusa.com

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 12

www.qdusa.com 03/09/2018

There are further diagnostics for viewing the count of motor-synchronization, motor, or valve faults. These are
listed below. These should always return 0, unless there is a problem.

 // Summary: Obtain the number of motor-synchronization faults

 // Returns: The count of motor-synchronization faults

 uint GetNumMotorSynchFaults();

 // Summary: Obtain the number of motor faults

 // Returns: The count of motor faults

 uint GetNumMotorFaults();

// Summary: Obtain the number of valve faults

 // Returns: The count of valve faults

 uint GetNumValveFaults();

HAC900S Specific: warm-up or cool-down

By design, the HAC900S is capable of cooling or warming up the Quantum Design GA-1 cold head and
therefore a cryogenic environment coupled to its first and second stages. By default the compressor is set for
cooling. The following functions provides a means of specifying warming or cooling. Currently, the warming

feature is disabled, but will be enabled in a future release.

// Summary: Configure the cold-head for "warm up" mode

 void ConfigForWarmup();

// Summary: Configure the cold-head for "cool down" mode (default)

 void ConfigForCooldown();

HAC900S Specific: spool-valve diagnostics

Finally, there are several diagnostic functions pertaining to spool-valve movement. Understanding these
functions requires low-level knowledge of how the compressor works, and will not be described here.

// Summary: Obtain the maximum valve encoder count per valve cycle

 // Returns: The maximum position of the valve per cycle in encoder counts

 short GetValvePosMax();

// Summary: Obtain the minimum valve encoder count per valve cycle

 // Returns: The minimum position of the valve per cycle in encoder counts

 short GetValvePosMin();

// Summary: Obtain the duration at which the valve is in the maximum position per cycle (ms)

 // Returns: The time (ms) that the valve was in the max position per cycle

 ushort GetValveMaxDurationMs();

http://www.qdusa.com/

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 13
www.qdusa.com 03/09/2018

// Summary: Obtain the duration at which the valve is in the minimum position per cycle (ms)

 // Returns: The time (ms) that the valve was in the min position per cycle

 ushort GetValveMinDurationMs();

// Summary: Obtain the duration at which the valve is in the rising position per cycle (ms)

// Returns: The time (ms) taken for the valve to transition from the min to max position

 ushort GetValveRiseDurationMs();

// Summary: Obtain the duration at which the valve is in the falling position per cycle (ms)

// Returns: The time (ms) taken for the valve to transition from the max to min position

 ushort GetValveFallDurationMs();

// Summary: Get the ratio, (max valve duration) / (min valve duration). Useful for determining
if the valve movement is symmetric

 // Returns: The ratio, (max valve duration) / (min valve duration)

 float GetValveMaxMinRatio();

// Summary: Get the ratio, (rising valve duration) / (falling valve duration). Useful for
determining if the valve movement is symmetric

 // Returns: The ratio, (rise valve duration) / (fall valve duration)

 float GetValveRiseFallRatio();

Basic Interface: Example

Provided below is an example of using the SDK for the HAC900S to set custom compressor speeds,

and make the compressor run.

 // Create a ControlComp object

ControlComp comp = new ControlComp();

// Enable remote control

comp.SetRemoteModeEnable(true);

// Set the speed mode to "CustomSpeed"

comp.SetRemoteModeType(CompressorMode.CustomSpeed);

// Set the head speed to 60 Hz

comp.SetCustomHeadSpeed(60);

// Set the compressor speed to 25 Hz

comp.SetCustomCompSpeed(25);

// Start the compressor running

comp.SetRunEnable(true);

file:///C:/Users/msantos/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/5XMHJ559/www.qdusa.com

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 14

www.qdusa.com 03/09/2018

Advanced Interface: Example

This example shows how to use the advanced compressor control object to set the compressor to

warmup mode, set it to low speed, and make it automatically shut itself off after a specified duration

of 24.3 hours.

 // Create a AdvControlComp object

 AdvControlComp advComp = new AdvControlComp();

 // Configure for warmup mode

 advComp.ConfigForWarmup();

 // Set the mode to low speed

 advComp.SetRemoteModeType(ControlComp.CompressorMode.LowSpeed);

 // Tell the compressor to run for 24.3 hours

 advComp.RunCompForSpecifiedDuration(24.3);

Graphical User Interface (GUI)

A GUI is available that allows for PC-based control of the compressor, and provides a thorough example of
using the SDK. The GUI contains two tabs: one for the basic operations, and one for the advanced operations.

Basic Tab

The desired compressor is selected within the “Basic” tab. Once a compressor has been selected, the grayed-
out sections become available. Then, the run mode of the compressor can be selected, as well as enabling the
diagnostic information. The GUI code shows how to utilize a data-grid widget to create a table like the
diagnostic display of “Real-Time Values”. The Log to CSV contains the real-time variables in comma-
separated format, and uses the “Log Interval” to determine how frequently to log data. The default log interval
is 1000 milliseconds. The timer causes the compressor to run for the specified duration in hours. The diagnostic
info is generated using a data-grid widget.

http://www.qdusa.com/

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 15
www.qdusa.com 03/09/2018

Advanced Tab

The advanced tab appears after selecting a compressor. It contains a section for “Warmup/Cooldown”, “Run
Timer” and “Diagnostic Info”.

file:///C:/Users/msantos/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/5XMHJ559/www.qdusa.com

QD Software Development Kit

Quantum Design Application Note 1201-017, Rev. A0 16

www.qdusa.com 03/09/2018

Providing Actual Temperatures to the SDK (HAC900S only)

In order for the compressor PID control mode to work, the first-stage and second-stage temperatures

must be measured and provided to the compressor firmware. When a compressor is used with a

Quantum Design Versalab, the Versalab provides the required temperatures. However, if the

compressor is used without a Versalab, another means of measuring and reporting the required

temperatures is necessary, if PID control mode is desired.

The compressor SDK provides the command TransmitTempPDOs, which can be used to send the

required temperatures via PDOs (process data objects) over the CAN bus. Some means of providing

the temperatures to the PC running the SDK is required. This could be accomplished with external

temperature sensors, used in conjunction with LabVIEW or something similar. The following

diagram illustrates this configuration.

Alternatively the PDOs can be sent by any CANopen hardware connected to the CAN network. The PDOs for

the first stage and magnet temperatures are COB-ID 0x1C6 and 0x486 respectively. The PDO length is 6 bytes

and the content is a 4 byte floating point temperature followed by a 2 byte integer temperature status. Alternate

PDOs can be configured using the compressor (node 4) 0x1401 and 0x1402 CAN dictionary entries but the

length and content must remain unchanged.

http://www.qdusa.com/

