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Introduction 
Attaching transport leads to a sample in order to measure its electrical resistance can be 
difficult or impractical if the sample is, say, air-sensitive, liquid or has an insulating 
barrier on the surface. However, it is possible to deduce the resistivity of a regularly 
shaped sample from its response to an a.c. magnetic field, a technique that does not 
require any connections be made to the sample. The electrical resistivity of a sample can 
be deduced from a change in mutual inductance between two coils when the sample is 
inserted into them. This has been described by a number of authors. For substances which 
are nonmagnetic or very weakly magnetic this leads to a decrease in the mutual 
inductance M between the coils. A weakly magnetic material is one in which the 
magnetic permeability μ ≈ 1 (NOTE: we will use cgs units in this application note unless 
stated otherwise). Thus, we will be neglecting intrinsic magnetic properties of the sample 
in this discussion, whether the sample is paramagnetic (μ >1) or diamagnetic (μ <1) and 
will instead be focusing only on the inductive properties of electrically conductive 
samples. The reduction in mutual inductance dM can be expressed in the form dM = dM' 
+ idM'' wherein the imaginary part dM'' is derived from losses due to induced eddy 
currents. By measuring dM' and dM'' or, in our case, the real and imaginary parts of the 
a.c. magnetic moment m' and m'', the sample’s specific resistivity can be determined. 
Note that m' = χ'·Hac where χ' is the real part of the a.c. susceptibility and Hac is the 
applied a.c. magnetic field. Concerning systematic errors, the inductive method is 
potentially better as it requires only the knowledge of the sample radius r while the 
standard bulk transport method requires measurement of the sample cross-section as well 
as the separation of the voltage leads.  

 
Theory 
Starting from the Maxwell equations for an alternating field in cylindrical coordinates: 
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inside a material of isotropic resistivity, the response satisfies the equation: 
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where c is the speed of light, ρ is the sample resistivity and δ is the skin depth of the 
material (in cgs units): 
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and f = ω / (2π) is the frequency in Hz. For ease of calculation, we also write the skin 
depth equation in which the sample resistivity ρ is expressed in μΩ-cm: 
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Note that the theory here works only if the permeability is close to unity and is not 
complex (as is the case near a magnetic phase transition).  

Solving this differential equation for a cylindrical sample whose axis is parallel to the 
magnetic field (see ref. III for more details) and expressing in terms of the dimensionless 
a.c. susceptibility yields: 
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J2 and J0 are Bessel functions of the first kind, and: 
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where r is the radius of the cylindrical sample. Note that: 
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(and similarly for the χ'') where m' is the measured in-phase moment (in emu) and V is 
the sample volume (in cm3). The problem is one of deducing ξ and hence ρ from the 
measured quantities m' and m'' . 

Shown in Figure 1 is a graph of 4πχ of a nonmagnetic conducting sample versus the 
argument ξ (data for the plot is taken from ref. III). 

We found ref. III to be a very good resource in general – keep in mind that the notation in 
that paper is subtly different: the quantity m' is a dimensionless ratio of mutual 
inductance (not the a.c. moment) and ξ is written there as x.  

For better visualization in terms of measured quantities, we also include Figure 2 which 
expresses the a.c. susceptibility as a function of a.c. frequency for the material properties 
of a 2 mm radius copper cylinder at 300 K. 
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Figure 1: a.c. susceptibility of a long cylindrical sample with axis parallel to the magnetic field 

 
Referring to Figure 1, the peak in χ'' occurs when the skin depth is about half the cylinder 
radius. This peak can cause issues with some analysis methods as the χ'' vs. ξ plot is not 
single-valued. This problem is averted if one maps the a.c. response in terms of the phase 
shift due to the sample (recorded in the ACMS measurement .DAT file as “Phase(deg)”): 
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Using the tabulated values from ref. III for m' and m'' (the ratio will be the same whether 
m refers to inductance ratio or magnetic moment), Figure 3 is generated. 

One can model the curve to obtain a numerical conversion between Δφ and ξ and thus 
deduce the resistivity at any given frequency. More details about our specific methods to 
that end are given in the next section. 
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Figure 2: theoretical response of a 2 mm radius Cu cylinder at 300 K (ρ=1.72 μΩ-cm) 
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Figure 3: a.c. measurement phase shift is a single-valued function of ξ 
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Figure 4 is included as a heuristic tool to show the influence of sample magnetism on the 
measured a.c. susceptibility. In addition to the induced eddy currents in the conductor, 
there is a contribution to χ' from the magnetic polarization of the sample in the a.c. field: 
Pauli paramagnetism of the conduction electrons, Landau diamagnetism, Larmor 
diamagnetism (of core-level electrons), Curie-Weiss paramagnetism of local spins, and so 
on. This can be seen clearly if measuring the Pd standard sample included with the 
ACMS option: at low frequencies one sees a positive and frequency independent χ'  due 
to the large paramagnetic moment of Pd but at higher frequencies the eddy current 
screening dominates and a negative χ'  is observed. In addition, the eddy currents screen 
the field from the inside of the sample so the magnetic response of the sample is further 
attenuated as can be seen in the plot below as the three curves converge toward high 
values of ξ. Thus, if one is using an analysis technique that involves χ' (such as the Δφ 
method), the sample magnetism contribution to χ' must be removed before proceeding. 
This is usually achievable by using sufficiently high frequencies such that δ < r .  
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Quantum Design Application 1084-306, Rev. B0 5 
 December 2009 



Based on the above discussion, we can place the following requirements on a sample in 
order to make a successful contactless resistivity measurement using the ACMS option of 
the PPMS: 

- sample can be shaped into a cylinder that is: 
o long in order to avoid sample end effects (12 mm high samples were 

measured here) 
o large enough diameter to generate eddy currents: this is due to the 

quadratic dependence of χ'' on r for small values of r/δ 
- sample resistivity is isotropic 
- sample resistivity is in the range of typical metals ( 0.01 – 100 μΩ-cm) 
- sample magnetism is weak compared to the inductive response and/or can be 

suitably subtracted (see Figure 4), otherwise there will be a systematic error in Δφ 
 
Data Acquisition 
Some authors (ref. II) tried to solve the problem of solving the Bessel functions by 
building their devices so that the response signal in the secondary coil is directly 
proportional to the resistivity of the material. This only works properly for one particular 
frequency since stray capacitances, etc. could cause unreliable data. Among the several 
analysis methods described by Chambers and Park (ref. III), one was to use polynomial 
approximations for the Bessel functions which are valid either for large or small values of 
ξ. This implies that the sample’s resistivity must be approximately known in advance of 
performing the analysis.  

In order to determine the resistivity of a variety of samples in a wide range of 
frequencies, we wrote a program in Turbo Pascal which calculates the Bessel functions 
using an algorithm from ref. (IV) for a fixed starting value ξstart and then using 
equation (8) to calculate the corresponding value Δφ'start . After this, the program changes 
the ξ-value until the difference between the calculated value Δφ' and the measured phase 
shift Δφ  is less than 1 ppm. Each calculation took less than 40 steps per measured data 
point. 

To test the measured data for errors which might be derived from an artificial phase 
offset of -90 deg occurring with very weak signals (total moment < 10-6 emu), the above 
calculation should be repeated at a few different frequencies.  

 

Experiment 
The cylindrical shaped samples were inserted parallel to the axis of the alternating 
magnetic field. To avoid end-effect errors (which are not considered in the theory 
described above) we used samples with a length of approximately 12 mm and a radius of 
between 0.5 and 2.5 mm. While measuring the amplitude and phase of the a.c. 
magnetization, we applied an a.c. magnetic field of not less than 10 Oe since the response 
signal becomes more stable when the field is higher. The frequency of the applied field 
ranged from 1 kHz to 10 kHz. As a general rule, it is best to keep the frequency near the 
peak in χ''(ξ) (see Figure 1) so that the slope of Δφ vs. ξ is highest (see Figure 3) and thus 
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the systematic errors in the derivation of ξ are lowest. For poor conductors such as 
indium, higher frequencies are advantageous in order to achieve stable phase signals. The 
measured data for the a.c. magnetization over a wide range of temperatures were later 
exported and written into our program for resistivity calculations. 

Figure 5 shows our calculated values for measurements of oxygen-free copper (left) and 
gold (right) in comparison with values from literature (ref. V). In the case of copper we 
also performed a direct resistance measurement by applying the 4-probe method (using 
the bridge board of our PPMS). The difference between literature and measured values 
for the low temperature part of the resistivity of copper is derived from impurities in our 
sample.  

 
Figure 5: (LEFT) resistivity of oxygen-free copper determined with the inductive method (open 
circles) and those determined from the 4-point method (open squares) in comparison with data from 
literature (ref. V).  (RIGHT) Resistivity of gold plotted versus temperature. The full circles are 
derived from literature (ref. V). Other symbols are calculated values from inductive measurements 
with different frequencies of the applied a.c. magnetic field. 
 
A very interesting result is shown in Figure 6. Here we measured a pressed powder 
sample of the superconductive material Nb3Sn (Tc ≈ 18 K). The graph shows the 
calculated resistivity from inductive measurements in comparison with those of the direct 
4-point method. The difference between the absolute values is a surprising factor of 20, 
whereas the temperature dependence in both measurements is identical.  

We interpret this difference in absolute values as a result of non-homogeneous potential 
distributions within the powder specimen where the 4-point method is applied. In order to 
get the sample resistivity values, one should use an effective cross section and length of 
the specimen. 
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Figure 6: Calculated resistivity deduced with the inductive method (right axis, open squares) and the 
4-point transport method (left axis, full circles). 
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