
1070-210 Rev. B0 (07/2020) Page 1

Interfacing PPMS, DynaCool, VersaLab, and MPMS 3 Systems with
LabVIEW and Other .NET Languages

Some users of Quantum Design instruments design custom experiments using their ownmeasurement
electronics, especially when working on the general purpose platforms of the PPMS, DynaCool and
VersaLab. This requires the user to have control of both their external device as well as the system’s
state (e.g., temperature andmagnetic field). A very popular software package for general
measurement automation used by our customers is LabVIEW from National Instruments. However, we
at Quantum Design have designed our own software package called MultiVu to control the base
system as well as measurement options.

This application note describes how we have made a bridge between these two software environments
for the purpose of controlling our system from LabVIEW. Accompanying this note should be a ZIP
archive entitled QDInstrument_LabVIEW.zipwhich contains all necessary programs described
herein, assuming that the user has separately purchased a LabVIEW software installation. This
document is intended for those with previous LabVIEW programming experience. For general LabVIEW
questions and support, please consult National Instruments resources on the web.

Integrating LabVIEW and .NET Languages with MultiVu

The software package accompanying this application note provides a link between the LabVIEW and
MultiVu programs. We have also posted software packages on our Pharos digital library that
demonstrate this for C# and Visual Basic:

https://www.qdusa.com/pharos/view.php?fDocumentId=2704

as well as a socket server that allows remote control from non-Windows operating systems:

https://www.qdusa.com/pharos/view.php?fDocumentId=2703

The program responsible for this connection is called QDInstrument andmust be installed on the
computer running LabVIEW. In brief, the QDInstrument program is a translator with a .NET interface for
communication with the LabVIEW VI and an OLE interface for communication with MultiVu. For more
detailed information about this, please see Appendix B of this application note. There are a number of
advantages to using this package:

1. It can be used across the Quantum Design systems of PPMS, DynaCool, Versalab andMPMS3.
This is because the QDInstrument program communicates with the user-identified type of
MultiVu and not with the system’s hardware directly. The user is required simply to select from a
list in a VI (OpenQDInstrument) which system type is in use.

2. It allows (requires) MultiVu to be running because it interacts at the software level with the OLE
interface of MultiVu. Therefore it takes advantage of all the data redirection and safeguarding

10307 Pacific Center Court, San Diego, CA 92121 | Tel: 858.481.4400 | apps@qdusa.com | www.qdusa.com

Platform: PPMS, DynaCool, VersaLab, MPMS-3, OptiCool

https://www.qdusa.com/pharos/view.php?fDocumentId=2704
https://www.qdusa.com/pharos/view.php?fDocumentId=2703


LabVIEW and .NET Interfacing

1070-210 Rev. B0 (07/2020)    Page 2

built into MultiVu. Basically, MultiVu treats the LabVIEW requests the same way it treats direct user
input from the keyboard at the MultiVu computer.

3. In addition to being able to run LabVIEW locally on the MultiVu computer, this software package
can run in a “remote mode” where the LabVIEW andMultiVu computers communicate over the
local area network (LAN). In this case, a simple server program QDInstrument_server.exe

runs on the MultiVu computer and handles requests from LabVIEW via QDInstrument. The remote
mode is appealing as it does not require additional LabVIEW installations and also keeps the
MultiVu computer’s resources dedicated to running the QD system.

4. It is compatible with all versions of LabVIEW from LabVIEW 8.2 up to the most recent (at this time
that is LabVIEW 2014).

For more information about the software versions, compatibility, and bug fixes please see the
ReleaseNotes.txt file included in the QDInstrument package accompanying this application note.
Appendix A gives some helpful historical background and context regarding alternative methods for
making custom experiments on Quantum Design instruments.

Operating in Remote Mode

Asmentioned above, running the LabVIEW program on a separate computer fromMultiVu has some
advantages. The diagrams in Figure 1 and Figure 2 illustrate examples of a LabVIEW computer
attached to an LCRmeter via, for example, a GPIB or USB interface (yellow link). The QDInstrument VIs
and QDInstrument.dll are installed on this computer and communicate over .NET (green link). The
DLL is configured to address the QDInstrument_server.exe program running on the MultiVu
computer. This is done via wired or wireless LAN (blue link). It is also possible to connect an Ethernet
cable directly between the two computers in the absence of a LAN. The server program in turn
communicates over OLE with the MultiVu application (red link). Lastly, MultiVu controls the instrument
which in this case is either a PPMS (Figure 1) or a DynaCool (Figure 2).

Follow these steps to set up for remote mode:

1. Install Microsoft .NET 3.5 on the computer running MultiVu and the computer running LabVIEW
computers. Microsoft .NET 3.5 can be downloaded at http://www.microsoft.com/en-
us/download/details.aspx?id=21.

2. Delete any previous versions of the QDInstrument VIs, LLBs, and QDInstrument.dll on the
LabVIEW computer.

3. Copy all files except for the QDinstrument_server.exe to a folder on the LabVIEW
computer. Keep these files in one directory. Any directory is OK.

4. Copy QDInstrument_Server.exe to the MultiVu computer. We recommend creating a folder
C:\QDLabVIEW but any directory is OK.

5. Determine the IP address of the MultiVu computer. One way to do this on Windows: Click
Start→ Run... and type "cmd" then hit OK. At the command prompt, type "ipconfig" and locate the
address (in format ###.###.###.###) next to the text "IP Address" or "IPv4 Address".

10307 Pacific Center Court, San Diego, CA 92121 | Tel: 858.481.4400 | apps@qdusa.com | www.qdusa.com



LabVIEW and .NET Interfacing

1070-210 Rev. B0 (07/2020)    Page 3

LabVIEW

Model 

6000

LCR meter

GPIB

LAN

LabVIEW PC MultiVu PC

GPIB CAN

Model 

1000

QDInstrument_server.exe

MultiVu

PPMS

QDInstrument.dll

QDInstrument VIs

Figure 1: Example using LabVIEW in remote mode on a PPMS system

LabVIEW

LCR meter

USB

LAN

LabVIEW PC MultiVu PC

CAN

DynaCool 

electronics

QDInstrument_server.exe

MultiVu

DynaCool

QDInstrument.dll

QDInstrument VIs

Figure 2: Example using LabVIEW in remote mode on a DynaCool system

Operating in Local Mode

In local mode, both LabVIEW as well as a communication bus to the user’s external electronics (here,
GPIB to an LCRmeter) must be installed on the MultiVu PC. The .NET connection (green) between the
VIs and the QDInstrument.dll is the same as above, but this time the DLL communicates directly
with MultiVu over OLE (red). Note that an independent GPIB bus is recommended in this setup so that
there are not traffic or settings conflicts in communicating with the LCRmeter vs. the PPMS electronics.

10307 Pacific Center Court, San Diego, CA 92121 | Tel: 858.481.4400 | apps@qdusa.com | www.qdusa.com



LabVIEW and .NET Interfacing

1070-210 Rev. B0 (07/2020)    Page 4

LabVIEW

Model 

6000

LCR meter

GPIB

MultiVu PC

GPIB CAN

Model 

1000

MultiVu

PPMS

QDInstrument VIs

QDInstrument.dll

Figure 3: Example using LabVIEW in local mode on a PPMS system

Follow these steps to set up for local mode:

1. Install Microsoft .NET 3.5 on the computer running MultiVu and LabVIEW. Microsoft .NET 3.5 can
be downloaded at: http://www.microsoft.com/en-us/download/details.aspx?id=21.

2. Delete any previous versions of these VIs, LLBs, and QDInstrument.dll.

3. Copy all files in the zip archive to a new folder on your PC which runs MultiVu and LabVIEW. We
suggest creating a folder C:\QDLabVIEW but any directory is OK.

Testing the Installation by Running the Example VI

Tomake sure your connection is functioning properly and to see an example of how to use the
QDInstrument VIs, load QDInstrument_Example.vi and run it. The example purges the sample
chamber, increments temperature (295, 296, 297 K) and at each temperature steps the field from 0 to
500 Oe in 100 Oe steps. At the end it sets zero field (on PPMS the endmode for the magnet is
Persistent) and a temperature of 300 K. Instructions for running this example are below:

1. After opening the VI, go to the front panel and select the appropriate instrument type: PPMS,
VersaLab, DynaCool, or SVSM (MPMS3). Ignore warnings from LabVIEW about the version of the
QDInstrument DLL if they come up.

2. If in remote mode, toggle the Remote button to True and enter the IP address of the MultiVu
computer.

3. Launch MultiVu. If debugging the code, you may use Simulation Mode for MultiVu on a PC not
connected to the QD instrument hardware.

4. If in remote mode, run QDInstrument_Server.exe on the MultiVu computer.

5. Run the VI and watch in MultiVu to see the chamber purge, then the temperature and field steps.

10307 Pacific Center Court, San Diego, CA 92121 | Tel: 858.481.4400 | apps@qdusa.com | www.qdusa.com

http://www.microsoft.com/en-us/download/details.aspx?id=21


LabVIEW and .NET Interfacing

1070-210 Rev. B0 (07/2020)    Page 5

6. For troubleshooting remote connections, a log of the QDInstrument network connection is kept in
the file C:\QDLogs\QDInstrument\Event.log on the LabVIEW computer.

Creating New LabVIEW Programs Using QDInstrument VIs

1. Start with an OpenQDInstrument.vi. Wire a Ring Control or Ring Constant to its "Instrument
Type" input. Choose the appropriate instrument: PPMS, VersaLab, DynaCool, or SVSM (MPMS3).
If you are using Local Mode, set the "Remote" input to False (the "IP Address" input is ignored in
this case). If you are using Remote Mode, set the "Remote" input to True and set the "IP Address"
input to the IP address of the MultiVu computer found in the setup section.

2. Wire the "Instrument Ref" output of OpenQDInstrument.vi to the other QDInstrument VIs,
such as SetTemperature.vi. This LabVIEW RefNum is used by all QDInstrument VIs to refer
to the instrument. You may use this RefNum for LabVIEW flow control.

3. You may wish to wire up the error clusters as well for additional flow control. This is especially
useful for use with non-QD VIs because they do not use the QDInstrument reference for flow
control.

4. Integer inputs and outputs of the VIs, such as approach modes and status codes, are
enumerated. As a result, if you right-click on the connection for one of these values and select
Create→ Control, Create→ Indicator, or Create→ Constant, LabVIEW will create enumerated rings
to help you set and read these values.

5. At the end of your VI, connect the "Instrument Ref" RefNum to a .NET Close Reference VI in order
to avoid a memory leak in LabVIEW. The example QDInstrument_Example.vi shows how to
do this.

The library QDInstrument.llb is a collection of LabVIEW VIs which use QDInstrument and contains
the following:

l OpenQDInstrument.vi: Gets a RefNum reference for communication to MultiVu for use by
the rest of the QDInstrument VIs.

l SetTemperature.vi: Sets temperature, rate, and approach mode.
l GetTemperature.vi: Reads present temperature and temperature status.
l SetField.vi: Sets magnetic field, rate, approach mode, and endmode.
l GetField.vi: Reads present magnetic field and field status.
l SetChamber.vi: Sends sample chamber commands such as purge and seal.
l GetChamber.vi: Reads sample chamber status.
l SetPosition.vi: Sets rotator position.
l GetPosition.vi: Reads present rotator position.
l WaitFor.vi: Waits for stability of requested subsystems (Temperature, Field, Rotator Position,
and Chamber) and then waits for a specified amount of time.

NOTE: the Position subsystem is compatible with DynaCool Release 1.0.4 and later. Other platforms do
not support the position commands as of this revision (07/2020). Rotator position can still be controlled
on PPMS using the SendPPMSCommand_Rotator VI (see the next section).

10307 Pacific Center Court, San Diego, CA 92121 | Tel: 858.481.4400 | apps@qdusa.com | www.qdusa.com



LabVIEW and .NET Interfacing

1070-210 Rev. B0 (07/2020)    Page 6

NOTE: when using the PPMS with temperature control at a user thermometer, a simple addition ($ALT_
TEMP command) needs to be made to the user thermometer .CFG file before sending it to the Model
6000. Otherwise, GetTemperature.viwill read the block temperature instead of the probe
temperature. Relevant cases include the rotator probe, multifunction probe (MFP), or any custom probe
that uses a .cfg file with a USERTEMP command for the user thermometer. See the files in this folder on
Pharos for details: https://www.qdusa.com/pharos/browse.php?fFolderId=417; this is only necessary
on the PPMS system.

Getting PPMS Data Items and Low-Level PPMS Control in LabVIEW using QDInstrument VIs

For most applications, you can get the data you need from the PPMS and access normal PPMS
controls with the basic QDInstrument VIs. However, you may need other data items (e.g. rotator
position) or low level control (e.g. analog and digital outputs) from the PPMSModel 6000. The following
examples show how to do this.

To get PPMS data items:

1. On the LabVIEW computer, you should have the PPMS folder which contains GetPPMSItem.vi
and GetPPMSItem_Example.vi.

2. If using remote mode, start QDInstrument_Server.exe on the MultiVu computer.

3. Open GetPPMSItem_Example.vi. If using remote mode, set remote and set IP address to the
address of the MultiVu computer.

4. Set the Channel to 3.

5. Run the VI. You should see the rotator position reported in "PPMS Data"

6. Use GetPPMSItem_Example.vi as a template for creating your own VIs. Consult Table A-1 of
the PPMSGPIB Commands Manual available on Pharos at:
https://www.qdusa.com/pharos/view.php?fDocumentId=328 for mapping the channel. Note in
that table that the channel number is referred to as a bit.

7. You can use the same "Instrument Ref" for the GetPPMSItem_Example.vi as for the other
QDInstrument VIs.

To access low-level Model 6000 controls by sending GPIB commands and receiving replies from the
Model 6000, use the procedure described below. This functionality is a replacement for sending GPIB
commands to the Model 6000 using other techniques, such as WinWrap scripts (using the
SendPpmsCommand function) or custom software. On the LabVIEW computer, you should have the
PPMS folder which contains SendPPMSCommand.vi, SendPPMSCommand_Rotator.vi and
SendPPMSCommand_Example.vi. If using remote mode, start QDInstrument_Server.exe on
the MultiVu computer. First we will cover the example of controlling the rotator on the PPMS:

1. Open SendPPMSCommand_Rotator.vi. If using remote mode, set remote and set IP address
to the address of the MultiVu computer.

2. The dialog to set the rotator position allows you move to a position, go to the limit switch (called
“go to index” in motion dialog of MultiVu) or redefine current position to the position value that is

10307 Pacific Center Court, San Diego, CA 92121 | Tel: 858.481.4400 | apps@qdusa.com | www.qdusa.com

https://www.qdusa.com/pharos/browse.php?fFolderId=417
https://www.qdusa.com/pharos/view.php?fDocumentId=328


LabVIEW and .NET Interfacing

1070-210 Rev. B0 (07/2020)    Page 7

entered. The slow down code is described in the PPMSGPIB Commands Manual mentioned
above.

3. The MOVE command for setting rotator position, like temperature and field setting commands,
does not contain a wait condition so we added a wait dialog in this VI that uses the GetPPMSItem
command to query the PPMS status word.

4. The “Final Position” box demonstrates the use of the SendPPMSCommand to read the rotator
position (instead of the usual GetPPMSItem VI).

For an example of controlling the digital output of the Model 6000, see this example:

1. Open SendPPMSCommand_Example.vi. If using remote mode, set remote and set IP address
to the address of the MultiVu computer.

2. In MultiVu, select “Instrument->Digital Output…”. If “Aux Driver 1” reads “ON”, then uncheck
“Aux Driver 1” and press “Set” below “Digital Outputs”.

3. Run SendPPMSCommand_Example.vi.

4. In MultiVu, you should see “Aux Driver 1:” reading “ON”. In LabVIEW,” PpmsReply” should be
blank indicating a successful “DIGSET 1” GPIB command. “PpmsReply 2” should read “1”, the
value returned from the GPIB query “DIGSET?”.

5. Use SendPPMSCommand_Example.vi as a template for creating your own VIs. Consult the
PPMSGPIB CommandManual for details on GPIB commands you use with the Model 6000.

6. You can use the same "Instrument Ref" for the QDInstrument_Example.vi as for the other
QDInstrument VIs.

Getting CAN Data Items in LabVIEW using QDInstrument VIs

For most applications, you can get the necessary data from the standard VIs provided. However, in
case a CAN data item is needed, this example shows how it is done:

1. On the LabVIEW computer, you should have the CAN folder which contains CAN_
QDInstrument.llb and CAN_Float_Example.vi.

2. If using remote mode, start QDInstrument_Server.exe on the MultiVu computer.

3. Open CAN_Float_Example.vi. Set the instrument type: PPMS, VersaLab, DynaCool or SVSM
(MPMS3). If using remote mode, set remote and set IP address to the address of the MultiVu
computer.

4. Set the CANModule Node ID to an existing node on your system. For DynaCool and SVSM, you
can use node 3 for the TCM. For VersaLab, use node 2 for the VersaLab controller.

5. Run the VI. The SDO preloaded in this example is that of the temperature readback of the
temperature controller. You should read a nonzero value in the field "SDO Float Result".

6. Use CAN_Float_Example.vi as an example for creating your own VIs. You probably need to
ask Quantum Design for information about which CAN SDOs to read (node, index and subindex).

7. You can use the same "Instrument Ref" for the CAN VIs as for the QDInstrument VIs.

10307 Pacific Center Court, San Diego, CA 92121 | Tel: 858.481.4400 | apps@qdusa.com | www.qdusa.com



LabVIEW and .NET Interfacing

1070-210 Rev. B0 (07/2020)    Page 8

Troubleshooting

Below are the most common solutions offered when customers report problems in communicating
between computers or programs:

1. Make sure .NET 3.5 is installed on both computers. In our experience it is not always sufficient to
have a newer .NET installation (e.g., 4.0).

2. Windows Firewall may be blocking the TCP call from the remote computer. Please see this
screencast video on Pharos which shows how to open a TCP port for communication when
Windows Firewall is activated: https://www.qdusa.com/pharos/view.php?fDocumentId=1394

3. (PPMS only) make sure you have the latest release of PPMSMultiVu available from
www.qdusa.com

4. After installing MultiVu software, it needs to be listed as an OLE server in the Windows registry.
This is done by right-clicking on the MultiVu icon and selecting “run as administrator”. After
MultiVu launches, you can exit again. This only has to be done once.

5. On computers with UAC (user account controls) enabled, you must run MultiVu and
QDInstrument_server.exe using the same administrator privilege level: either both as
administrator or both as non-administrator. When in local mode, LabVIEWmust have same
privilege level as MultiVu.

6. (this case is probably quite rare) When in remote mode: in the event that the TCP port needs to be
changed from its default value of 11000 due to port conflicts, it is accessible under Options in
QDInstrument_server.exe and in the Block Diagram for OpenQDInstrument.vi in LabVIEW.
The value obviously needs to match both these places and also be a port that is not in use on
either computer.

7. Security settings on certain Windows-based PCsmay flag the downloaded
QDInstrument.dll as potentially unsafe and block execution. This will lead to VIs in the
QDInstrument package failing to run properly, usually accompanied by a LabVIEW error stating
‘Error 1386 – The specified .NET class is not available in LabVIEW’.

This issue can be resolved by navigating to the location where QDInstrument.dll is saved,
right-clicking to access the properties menu, and clicking the ‘Unblock’ button at the bottom of
the dialog:

Figure 4: Windows dialog showing the 'Unblock' option.

10307 Pacific Center Court, San Diego, CA 92121 | Tel: 858.481.4400 | apps@qdusa.com | www.qdusa.com

https://www.qdusa.com/pharos/view.php?fDocumentId=1394
http://www.qdusa.com/


LabVIEW and .NET Interfacing

1070-210 Rev. B0 (07/2020)    Page 9

Appendix A: Historical Overview of Custom Experiments on PPMS

If one wanted to perform any measurement outside the scope of MultiVu, there were historically 3
options:

1. Advisories (PPMS only): these are commands in MultiVu sequences which trigger an external
program (C++, Delphi, Visual Basic) to perform a task. Shortcomings of this method are that it
requires the user to write such a program and run it on the sameMultiVu computer, it provides
only primitive and one-way communication fromMultiVu, and is only available on the PPMS. This
method is described in PPMS Application Note 1070-202 at www.qdusa.com while 3rd party
instrument sample programs are available at:
http://www.qdusa.com/techsupport/softwareUpgrades.html.

2. Scripting within MultiVu using WinWrap Basic editor (available on all systems): think of scripts
here as enhanced MultiVu sequences that have the full power of the Visual Basic programming
language with its full command set. These are a very convenient way of enhancing an existing
measurement sequence without going outside of MultiVu. A shortcoming for use on PPMS: there
is currently (March 2013) only one GPIB bus that can be addressed within WinWrap so any
external instrument must use another bus (USB, Ethernet, serial) or share the GPIB bus with the
PPMS (not ideal due to possible GPIB settings conflicts and heavy traffic to Model 6000). This will
be corrected in future versions of PPMSMultiVu. See Application Note 1070-209 at
www.qdusa.com along with the attached example programs for more information on scripting.

3. LabVIEW (PPMS only): in the absence of a package provided by Quantum Design, users have
written LabVIEW VIs (virtual instruments) which controlled the PPMS by issuing GPIB commands
directly to the Model 6000. Drawbacks to this method are that:

a. MultiVu is usually required to be closed due to conflicts between MultiVu and LabVIEW at
the Model 6000. This presents a serious problem in cases where MultiVu is required to be
running in order to handle data “redirection” such as temperature (e.g., with Helium-3 or
Dilution Refrigerator options) or magnetic field (when using our new CAN-basedmagnet
power supplies).

b. The VIs will only work on the PPMS and not the CAN-based DynaCool, Versalab or MPMS3
systems.

It is clear that many customers prefer LabVIEW for running their custom experiments so a solution to
LabVIEW-MultiVu integration was needed across all systems.

Appendix B: More detail about MultiVu, OLE and .NET

Modern Quantum Design instruments all use MultiVu software for control and monitoring of the
instrument. Different instrument platforms (PPMS, DynaCool, VersaLab, and MPMS3) use different
varieties of MultiVu, but much in MultiVu is the same on all systems, such as many user-interface
elements. Most importantly for communicating with QD instruments from third party software, all four
varieties of MultiVu make available the same interface for common operations including setting and
reading temperature, magnetic field, and chamber gas state. The interface in MultiVu is Microsoft

10307 Pacific Center Court, San Diego, CA 92121 | Tel: 858.481.4400 | apps@qdusa.com | www.qdusa.com

http://www.qdusa.com/
http://www.qdusa.com/techsupport/softwareUpgrades.html
http://www.qdusa.com/


LabVIEW and .NET Interfacing

1070-210 Rev. B0 (07/2020)    Page 10

Object Linking and Embedding (OLE, also known as ActiveX). MultiVu is an OLE server, so any program
that can act as an OLE client can connect to the MultiVu OLE server to access temperature, field, and
chamber gas functionality.

LabVIEW can act as an OLE client, so in principle it can connect directly to MultiVu. Due to variations in
the way OLE is implemented, making a connection in this way between LabVIEW andMultiVu is not
reliable. Another issue with this approach is that each variety of MultiVu looks like a different program to
LabVIEW, so different LabVIEW VI files would be needed for each QD system. It is preferable to have
one set of VI files that work with all QD systems.

LabVIEW works very well with a newer Microsoft technology, .NET. QDInstrument.dll provides a bridge
between MultiVu (using OLE) and LabVIEW (using .NET). QDInstrument.dll communicates with MultiVu
using OLE, and provides access to the temperature, field, and chamber gas functionality on its .NET
interface for use by LabVIEW.

Additionally, QDInstrument.dllmakes it possible to use the same LabVIEW VI files on all four
modern QD platforms. It provides a generic type for all platforms called QDInstrument. When a VI
creates an instance of this type in LabVIEW, the VI specifies what platform to connect to, and then
QDInstrument.dll connects to the appropriate variety of MultiVu.

QDInstrument.dll provides another important function: the ability to make a remote connection,
with LabVIEW andMultiVu on separate computers. An additional program, QDInstrument_
Server.exe, provides remote access to the temperature, field, and chamber gas functionality of
MultiVu. When instructed to use a remote connection, QDInstrument.dll communicates with
QDInstrument_Server.exe (over the local area network) instead of MultiVu (using OLE). The
LabVIEW VI files are the same for local and remote modes: the VI simply specifies remote mode (and
the IP address of the MultiVu computer) when creating an instance of QDInstrument.

10307 Pacific Center Court, San Diego, CA 92121 | Tel: 858.481.4400 | apps@qdusa.com | www.qdusa.com


	Interfacing PPMS, DynaCool, VersaLab, and MPMS 3 Systems with LabVIEW and Oth...
	Integrating LabVIEW and .NET Languages with MultiVu
	Operating in Remote Mode
	Operating in Local Mode
	Testing the Installation by Running the Example VI
	Creating New LabVIEW Programs Using QDInstrument VIs
	Getting PPMS Data Items and Low-Level PPMS Control in LabVIEW using QDInstrum...
	Getting CAN Data Items in LabVIEW using QDInstrument VIs
	Troubleshooting
	Appendix A: Historical Overview of Custom Experiments on PPMS
	Appendix B: More detail about MultiVu, OLE and .NET


