

Application Note 1070-209

Quantum Design Application 1070-209, Rev. B0 1
 January 18, 2012

Getting Started with Visual Basic Scripting in MultiVu

Quantum Design has incorporated a Visual Basic interpreter within MultiVu on the following
platforms: PPMS, DynaCool, VersaLab and MPMS SQUID VSM. This provides much more
powerful programming options to the advanced user as compared to solely using sequences. The
ability to parameterize quantities, use conditional statements to optimize measurements, post-
process or analyze data on the fly, and integrate 3rd party instruments into measurements are just
a few examples of the benefits that are available through the use of Visual Basic scripting. If
starting from scratch, this is the easiest path for integration of 3rd party instruments on Quantum
Design systems. If a LabVIEW interface is preferred, please see PPMS Application Note 1070-
210 “Interfacing LabVIEW programs with Quantum Design Instruments” at www.qdusa.com .

What is Visual Basic scripting?

The Visual Basic interpreter included in MultiVu, WinWrap Basic, is very similar to VBA
provided by Microsoft. The executable programs (.BAS files) are called macros in MultiVu. We
also refer to WinWrap Basic as a scripting environment.

General guides to programming in Visual Basic are available on the web. For example, here is a
link to a Microsoft VBA programming guide:

http://msdn.microsoft.com/en-us/library/aa716285(VS.60).aspx

WinWrap’s language reference page is a more advanced resource:

http://www.winwrap.com/web/basic/language/?p=doc_group_overview.htm

WinWrap also provides full function reference embedded into the editor in MultiVu, accessed by
pressing F1 or right-clicking in the editor window. This reference material applies only to
general WinWrap functions and not the MultiVu platform-specific functions (like setting or
reading the temperature or magnetic field). For a dictionary of essential MultiVu function calls,
see the section at the end of this application note. This dictionary is also included as a PDF file as
part of a .ZIP archive attached to this application note. That .ZIP file contains example programs
for interfacing external instruments, controlling the QD instrument, and creating and
manipulating data files.

There is also a dictionary of the available function calls which can be pulled up by pressing the
Browse Object button (circled in red in the editor screen shot below).

2 Application Note 1070-209, Rev. B0 Quantum Design
 January 18, 2012

How do I get started?

To start writing a Basic program from scratch, access the Edit Macro command in MultiVu
under Sequence > Advanced > Edit Macro as shown below:

Selecting Edit Macro will then open up the WinWrap Basic editor:

You can also translate an existing sequence (.SEQ file) into a Basic program using the
Sequence > Advanced > Compile Macro command when a sequence is open in MultiVu. This
can be helpful in getting started with basic instrument calls for setting field, temperature, etc. if

Quantum Design Application Note 1070-209, Rev. B0 3
 January 18, 2012

the attached example programs (see zip file with this app note) or the MultiVu OLE dictionary
(at the end of this note) are not clear. . IMPORTANT NOTE: if the WinWrap editor is already
open, the Compile Macro operation may erase the contents of the active sheet and replace it with
the compiled sequence, so you should open a new blank macro before compiling a sequence.

In the attached ZIPped folder are some example macros (.BAS files), object files (.OBJ), and
class files (.CLS). Please consult a programming guide for more information on the creation and
use of objects and classes. Unpack this zip file into the folder C:\qdppms\macros (or
C:\QDVersaLab\macros or C:\QDSquidVSM\macros, etc.). This is the default location for macro
files. We suggest right-clicking on the zip file and using “Open with Compressed (zipped)
folders” in order to preserve the structure of the subfolders (note that the zipped folder should
unpack with subfolders as the programs will reference objects or class files using relative
directory links). After unpacking the library, open macros from the editor using the Open file
icon. You will see general examples like MultiVu Scan Field Loop.bas which is
written so that any platform can use it and others which are platform specific like PPMS scan
V output.bas that uses analog voltage outputs on the Model 6000 of the PPMS. There are
macros for interfacing with 3rd party instruments like LCR meters, a resistance bridge, and a
lock-in amplifier. Perhaps the best example to start with is getGPIBdata and
writetofile.BAS (screen shot is shown on the next page) which shows the following
important operations:

1) Interfacing with the Quantum Design instrument (set/read field and temperature) which
are written in the cross-platform MultiVu.xxx format

2) Setting up and interfacing with an external resistance bridge using GPIB

3) Opening and writing data to a .DAT file which can be graphed in MultiVu; NOTE: some
existing users may have an older version of the class file (MVUData.cls) for this, while
a newer and more sophisticated version (MultiVuDataFile.cls) is included in the
attached zip file

In addition to code written by Quantum Design users, some manufacturers of 3rd party
instruments (e.g., Agilent) provide Visual Basic example code to interface their devices.

A useful feature of this editor is that it includes code completion as well as highlighting of
recognized functions. As an example, type Wait(and you will see a tooltip dialog showing the
format of the argument of the Wait function.

Please note: you use the green arrow button in the editor to run a macro, NOT using the MultiVu
Run Sequence command.

To easily see the objects or class files that a particular macro uses (seen in the '#uses
declarations at the beginning of the program), right-click in the editor window and select Sheet >
Open Uses and the modules will appear on new tabs on the left of the window.

When debugging code, it is helpful to keep the editor window always split in order to keep the
debug information visible after execution has stopped. Do this by right-clicking in the editor and
selecting View > Always Split.

4 Application Note 1070-209, Rev. B0 Quantum Design
 January 18, 2012

Declaration (top) and main program (bottom) of the macro getGPIBdata and
writetofile.BAS.

If you are interested in sharing any code you have written, such as .OBJ files and a simple
implementation example, Quantum Design welcomes your contributions at apps@qdusa.com .

Quantum Design Application Note 1070-209, Rev. B0 5
 January 18, 2012

Notes on scripting on the PPMS platform

If you do NOT see the Edit / Run / Compile macro options under the Advanced menu in PPMS
MultiVu, make sure you are using MultiVu version 1.5.0 or later. Also, make sure that the
shortcut used to launch MultiVu includes the command line item “-macro” (no quotes) at the
end. This is seen when right-clicking the icon and selecting Properties, then selecting the
Shortcut tab and looking at Target. Note also that much of the script writing and even testing can
be done in simulation mode which saves time at the instrument’s PC.

Note that we have not yet implemented PPMS option measurements (ACMS, ACT, VSM, etc.)
in macros. This is a work-in-progress. Please contact us at apps@qdusa.com for updates on this
development or if you want to discuss other aspects of your application.

Interfacing GPIB-based instruments on the PPMS is best done using a dedicated GPIB card (or
USB-GPIB converter) instead of sharing the same GPIB bus with the PPMS. This is because the
GPIB settings for the PPMS are different than typical GPIB instruments (e.g., auto serial polling
is OFF for PPMS) and the traffic to the PPMS can be very heavy.

6 Application Note 1070-209, Rev. B0 Quantum Design
 January 18, 2012

Quantum Design MultiVu OLE Methods

This section lists OLE methods that are commonly used when communicating with MultiVu.

Conventions
Methods signatures are shown twice, first in WinWrap (Visual Basic) syntax, second in C-like
syntax. Variable types are as follows (note that some types, e.g. long, have different meanings
in different languages, so be careful):

 double: 64-bit floating point number
 long: 32-bit signed integer

Some method arguments are passed by value, and others are passed by reference. By value
arguments look like this in WinWrap: ByVal temperature As Double, and like this in
C: double temperature. By reference arguments look like this in WinWrap: ByRef
temperature as Double, and like this in C: double* temperature. Note that you
must create appropriate variables to pass as by reference arguments before making a call to a
method that takes by reference arguments. Do not attempt to pass a constant number as a by
reference argument.

All methods return an error code with type long. A value of zero indicates no error. Other
values indicate an error.

Methods

SetTemperature
MultiVu.SetTemperature(ByVal temperature As Double, ByVal rate

As Double, ByVal approach As Long) As Long
long SetTemperature(double temperature, double rate, long
approach)

temperature: Temperature set point in kelvin

rate: Temperature rate set point in kelvin/second

approach: Approach mode as one of the following codes
 0: Fast settle
 1: No overshoot

GetTemperature
MultiVu.GetTemperature(ByRef temperature As Double, ByRef state

As Long) As Long
long GetTemperature(double* temperature, long* state)

temperature: Temperature reported by MultiVu in kelvin.

state: Temperature status reported by MultiVu as one of the following codes

Quantum Design Application Note 1070-209, Rev. B0 7
 January 18, 2012

 0: Unknown
 1: Stable
 2: Tracking
 5: Near
 6: Chasing
 7: Filling/emptying reservoir
 10: Standby
 15: General failure in temp control

SetField
MultiVu.SetField(ByVal field As Double, ByVal rate as Double,

ByVal approach As Long, ByVal mode as Long) As Long
long SetField(double field, double rate, long approach, long
mode)

field: Field set point in oersted

rate: Field ramp rate set point in oersted/second

approach: Approach mode as one of the following codes
 0: Linear
 1: No overshoot
 2: Oscillate

mode: Mode at end of field ramp as one of the following codes. Note that Persistent mode is not
supported by VersaLab and DynaCool
 0: Persistent
 1: Driven

GetField
MultiVu.GetField(ByRef field As Double, ByRef state As Double)

As Long
long GetField(double* field, long* state)

field: Field reported by MultiVu in oersted

state: Field state reported by MultiVu as one of the following codes
 0: Unknown
 1: Persistent (PPMS), Standby (VersaLab and DynaCool)
 2: Switch warming
 3: Switch cooling
 4: Holding in driven mode
 5: Iterating
 6: Charging
 8: Current error
 15: General failure in field control

8 Application Note 1070-209, Rev. B0 Quantum Design
 January 18, 2012

SetChamber
MultiVu.SetChamber(ByVal code As Long) As Long
long SetChamber(long code)

code: Chamber mode to set as one of the following codes
 0: Seal
 1: Purge/Seal
 2: Vent/Seal
 3: Pump continuous
 4: Vent continuous
 5: High vacuum

GetChamber
MultiVu.GetChamber(ByRef code As Long) As Long
long GetChamber(long* state)

code: Chamber state reported by MultiVu as one of the following codes:
 0: Unknown
 1: Purged/Sealed
 2: Vented/Sealed
 3: Sealed (condition unknown)
 4: Purging
 5: Venting
 6: Pre-high vacuum
 7: High vacuum
 8: Pumping continuously
 9: Flooding continuously

WaitFor
MultiVu.WaitFor(ByVal mask As Long, ByVal delay As Double,

ByVal timeout As Double)

mask: Code that determine which subsystems need to be stable in order to satisfy the WaitFor.
To wait for multiple subsystems, you set mask to the sum of the codes for the desired
subsystems. Subsystem codes are:

 0: No subsystems (useful to create a delay without waiting for stability)
 1: Temperature
 2: Field
 4: Position (rotator)
 8: Chamber (purge, high vacuum, etc.)

delay: Time in seconds to wait after stability is reached.

timeout: If stability is not reached within timeout (in seconds), the wait is abandoned. Set
timeout to 0 in order to turn off this feature (i.e., to wait forever for stability).

Note: The WaitFor method is for use within WinWrap scripting only. In order to wait for
stability in other programming environments, use one or more of the “Get” methods to poll
status.

